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Abstract 

This paper analyzes the relationship between the volatility of corporate bond returns and standard 

financial and macroeconomic indicators reflecting the state of the economy. We employ the GARCH-

MIDAS multiplicative two-component model of volatility that distinguishes the short-term dynamics 

from the long-run component of volatility. Both the in-sample and out-of-sample analysis show that 

recognizing the existence of a stochastic low-frequency component captured by macroeconomic and 

financial indicators may improve the fit of the model to actual bond return data, relative to the constant 

long-run component embedded in a typical GARCH model.  
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1. Introduction 

Volatility is the key variable in investment analysis, security pricing, and risk 

management. It is also the most important variable in option pricing, and it is heavily 

used in the regulation of financial institutions as the key input to estimate for example, 

value-at-risk (VaR) measures. Hence, it is not surprising that volatility forecasting and 

the analysis of the determinants of volatility have become fundamental research issues 

in financial economics. As opposed to most of the empirical literature, which has 

focused on the behavior of stock market volatility, we analyze the macroeconomic and 

financial determinants of corporate bond return volatilities. We use the multiplicative 

two-component GARCH-MIDAS model of volatility recently proposed by Engle, 

Ghyselsm and Sohn (2013) and we allow for different characteristics of volatility across 

six credit rating categories. 

Although the typical persistence in stock market volatility is captured by the 

popular ARCH/GARCH-type models of Engle (1982) and Bollerslev (1986), the 

dynamics of volatility seems to be better characterized by the component model 

introduced by Engle and Lee (1999). Their proposal consists of two additive 

GARCH(1,1) components, one interpreted as a short-run or transitory component, and a 

second one identified as the long-run or trend component of volatility.1 Recently, 

however, Engle and Rangel (2008) suggest a multiplicative component structure, the 

Spline-GARCH model, to accommodate non-stationarity features that are captured by 

the long run volatility component. Volatility is therefore a product of a slowly changing, 

low-frequency deterministic component picking up the non-stationary characteristic of 

the process, and a short-run/high frequency part described by a GARCH(1,1) process 

which means-reverts to one. The deterministic component is supposed to be a function 

                                                 
1 Other relevant papers related to this approach are Chernov, Gallart, Ghysels, and Tauchen (2003), and 
Adrian and Rosenberg (2008). See Wang and Ghysels (2011) for a review from a statistical perspective. 
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of macroeconomic variables, and hence volatility ends up being a combination of 

macroeconomic effects and time series dynamics. Engle and Rangel (2008) apply this 

model to stock market volatilities across 50 countries and conclude that high volatility is 

explained by high inflation, slow output growth, high volatility of short-term interest 

rates, high volatility of production growth, and high inflation volatility.  

On top of this, econometric methods involving data sampled at different 

frequencies have been shown to be useful for forecasting volatility in equity assets as 

well as to explain the relationship between conditional variance and expected market 

returns, especially in comparison with the evidence available from the GARCH family. 

The mixed frequency approach to modeling and predicting volatility known as mixed 

data sampling (MIDAS hereafter) was introduced in a series of papers by Ghysels, 

Santa-Clara, and Valkanov (2003, 2005, 2006). The success of MIDAS lies in the 

additional statistical power that mixed data frequency regressions incorporate from 

using daily data in estimating conditional variances. In addition, MIDAS allows for a 

very flexible functional form for the weights to be applied to past squared returns to 

explain current volatility.2    

The insight of the MIDAS specification when combining different frequencies 

motivates Engle, Ghysels, and Sohn (2013) to modify the dynamics of low-frequency 

volatility methodology employed by Engle and Rangel (2008) under the Spline-

GARCH model. They suggest interpreting the long-run/low-frequency volatility 

component in the spirit of MIDAS so that macroeconomic data, sampled at lower 

frequency, can directly be employed while maintaining the mean reverting unit GARCH 

                                                 
2 González, Nave, and Rubio (2012) also show the relevance of the weighting schemes of MIDAS when 
estimating conditional covariances as the cross products of portfolio returns and aggregate factor returns 
in the cross-sectional estimation of the market risk premium.  
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dynamics for the short-run component. This new class of models is called GARCH-

MIDAS.  

Contrary to the huge number of papers dealing with stock market volatilities, 

relatively little work has been done to understand corporate bond volatility dynamics. 

This is surprising. It may have been overlooked because of a possible similarity with 

equity or currency volatilities or it may have been considered not to be useful in 

practice. A more likely reason may have been related to the lack of high-frequency 

transaction data on corporate bonds.3 We think that the study of corporate bonds 

volatility is important for several reasons. First, it should facilitate a more rigorous risk 

management of corporate bond portfolios or portfolios that combine both equities and 

corporate bonds as a way of diversifying risks. Second, it may clarify capital structure 

decisions and, in particular, the market timing decisions of issuing new debt or new 

equity, as well as the speed of adjustment towards target leverage. Third, it is a 

necessary first step to analyze the correlation between stock and corporate bond returns 

at individual level. Finally, it complements the recent and prolific empirical analysis on 

liquidity. 

This paper fills this gap by analyzing the macroeconomic and financial 

determinants of the volatility of corporate bond returns across six credit rating 

categories by applying the GARCH-MIDAS specification. This methodology allows us 

to disentangle the impact of macroeconomic conditions on corporate bond volatility 

from the short-run dynamics. To the best of our knowledge this is the first paper directly 

analyzing this issue.  

We find that, for most financial or macroeconomic indicators, the in-sample 

recognition of a low frequency component of volatility in corporate bond returns 

                                                 
3 A similar pattern has been observed with respect to liquidity of corporate bonds. Using the recently 
available TRACE data Bao, Pang, and Wang (2011) analyzes both the time-series and cross-sectional 
behavior of corporate bond liquidity. 
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significantly improves the likelihood of the GARCH specification, relative to a constant 

long-term component, with independence of the credit rating category. In particular, 

high volatility is explained by high levels of default premium, VIX, and equity market-

wide illiquidity. Similarly, high volatility of corporate bonds is related to slow growth 

of industrial production, consumption, and employment, high inflation and high 

volatility of consumption growth. Not surprisingly, we also get evidence that volatility 

sensitivities to changes in financial or macroeconomic indicators are often monotonic in 

the rating of corporate bonds. For instance, high levels of default premium, VIX, 

market-wide illiquidity, and inflation have a much higher impact on CCC than in AAA 

bonds.  

Finally, the out-of-sample analysis confirms the relevance of the GARCH-MIDAS 

model relative to the constant-τ volatility specification when explaining corporate bond 

volatilities. In particular, it is interesting to note the significant impact of aggregate 

macroeconomic and financial risks on CCC corporate bonds for out-of-sample 

forecasting.  

This paper is organized as follows. Section 2 provides a summary of findings from 

related papers. Section 3 describes the data employed in the analysis, and Section 4 

presents preliminary evidence on corporate bond returns volatility. Section 5 briefly 

describes the new class of multiplicative component models for asset volatility, and 

section 6 reports and discusses our in-sample empirical results on the relationship 

between corporate bond volatility and macroeconomic and financial indicators. Section 

7 further motivates the results analyzing the behavior of the model during 

normal/expansion and recession periods, and Section 8 presents the out-of-sample 

results. Section 9 concludes.  
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2. Related Literature on Corporate Bond Volatilities 

Regarding the relation between macroeconomic conditions and the behavior of 

corporate bonds, one of the most demanding issues refers to the credit spread puzzle. 

Huang and Huang (2003) show that structural default models generate credit spreads 

much lower than the historical differences between Aaa and Baa corporate bonds. The 

two papers putting forward a potential solution of this puzzle consider the effects of 

macroeconomic conditions on corporate bond yields. Chen, Collin-Dufresne, and 

Goldstein (2009) use the Campbell and Cochrane (1999) model with habit preferences 

to show that time-varying risk aversion, together with a capital structure mechanism to 

match the countercyclical nature of defaults, can account for the high corporate bond 

spreads. In their model, investors are sensitive to the timing of defaults since high yield 

bond defaults are more likely to occur in recessions, when risk aversion is particularly 

high. Rather than modeling risk aversion, Chen (2010) employs time-varying 

consumption risk in the spirit of the long-run model of Bansal and Yaron (2004) to 

show that heteroskedastic long–run aggregate consumption risk makes firms default 

more likely in recessions and generates a more disrupting environment for both stock 

and bond holders. Given the response of firms to macroeconomic conditions, Chen´s 

model endogenously incorporates countercyclical fluctuations in risk prices, default 

probabilities, and default losses. This simultaneous co-movement generates the large 

credit spreads that explain not only the credit spread puzzle but also the low-leverage 

ratios historically reported by firms.  

Therefore, macroeconomic conditions have been used to explain the level of credit 

spreads over time. However, none of these papers address the issue of how 

macroeconomic conditions affect corporate bonds volatility. Similarly, Rachwalski 

(2011) shows that corporate bond returns predict consumption growth and labor income 



 
 

7 

growth even after controlling for equity returns. Additionally, the covariance between 

corporate bonds and stock returns predicts the stock market index. But, as the previous 

authors, Rachwalski (2011) does not discuss the relationship between corporate bond 

volatility and macroeconomic conditions.  

Finally, there are other papers analyzing the cross-sectional variation of corporate 

bond returns. Fama and French (1993) first show that default and term premia are priced 

factors in the corporate bond market. Gebhardt, Hvidkjaer, and Swaminathan (2005) 

show that default betas are significantly related to the cross-sectional variation of 

average bond returns. Furthermore, yield-to-maturity remains the only significant 

characteristic after controlling for default and term betas, suggesting that systematic risk 

factors are important for pricing corporate bonds. Lin, Wang, and Wu (2011) argue that 

market-wide liquidity risk is also a priced factor in the cross-section of corporate bonds 

as implied by their finding of a positive and significant relation between average bond 

returns and liquidity beta which is robust to including default and term betas. Acharya, 

Amihud, and Bharath (2013) also show that time-varying liquidity risk matters for 

corporate bonds, suggesting a flight-to-liquidity aspect in the corporate bond market on 

top of the well-known flight-to-quality. Moreover, as pointed out above, using 

transaction-level data from 2003 to 2009, Bao, Pang, and Wang (2011) find that market-

wide liquidity explains a substantial variation of credit yield spreads, and that illiquidity 

is also priced in the cross-section of corporate bond returns. Once again, a liquidity 

factor is used to explain the time series behavior of yield spreads but not the volatility of 

corporate bonds.  

The work more closely related in spirit to our research is Cai and Jiang (2008) 

who show that, during the 1996-2005 period, corporate bond excess return volatility is 

directly related to contemporaneous bond excess returns. They also argue that bond 
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volatility is a significant predictor of the three-month and six-month future corporate 

bond excess returns. More importantly, they decompose aggregate bond volatility into 

market, time-to-maturity, and rating components, to find that corporate bond volatility 

has both a slow-moving and a high-frequency component. They identify the low-

frequency component with the trend displayed by the rating volatility that shows a 

positive trend until 2002, followed by a declining pattern until 2005. However, they do 

not statistically decompose both components and they do not investigate the 

macroeconomic sources of the slow-moving pattern of volatilities. Moreover, their 

analysis is performed at the aggregate level rather than investigating the behavior of 

corporate bond volatilities throughout credit ratings. 

 

3. The Data  

Our corporate bond volatility study covers the period from January 1997 to January 

2012. Daily yields on corporate bonds come from the files of Bank of America / Merrill 

Lynch for six credit bond rating classes: AAA, AA, A, BBB, BB, and CCC or below.4 

Figure 1 displays the yields for the last day of each month for all credit ratings. Their 

evolution over time reflects a relatively parallel behavior, with the expected peaks 

during financial crises, especially for corporate bonds rated as BB or lower. Yields of 

CCC corporate bonds tend to be much higher than for other ratings, with an impressive 

overall high of almost 40% during November 2008. 

Our objective is to understand the behavior of corporate bond volatilities, which 

implies that we are specifically concerned with percentage changes in corporate bond 

prices. Given that we need daily corporate bond returns in order to estimate the 

multiplicative GARCH-MIDAS model, and that transaction prices are only available 

                                                 
4 Hereafter we call “CCC” when referring to the “CCC and below” rating class. 
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from 2002 onwards, we approximate the variation in prices from the variation in yields 

as follows, 

                    
( )
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where tP  is the price of a corporate bond at time t, ty  is the yield, N is the nominal 

value of the bond, and T is the time to maturity.5 

Panel A of Table 1 displays descriptive statistics for corporate bond yields in our 

sample. High yield bonds present very high standard deviations, positive skewness and 

excess kurtosis relative to high-rated bonds. Additionally, correlation coefficients are 

high for similar rating classes, and they decrease when we consider the return on bond 

classes with very different rating. The correlation between AAA and CCC bond returns 

is as low as 0.35. 

Similarly, Panel B of Table 1 contains information regarding corporate bond 

returns. Average returns present a decreasing pattern, due to the effect of ignoring 

coupon payments. However, mean values are not relevant for our study. What is really 

important is the dispersion in return volatilities. The annualized volatility of CCC bonds 

is 37.9%, relative to a volatility of 7.6% for AAA bonds. It must be taken into account 

that the variability in yields is fully translated to the variability in prices if the bond has 

fixed coupon. Indeed, the maximum and minimum annualized returns correspond to 

CCC bonds. In terms of returns, the BBB and BB categories have the highest negative 

skewness and excess kurtosis, and CCC bonds have more negative skewness and higher 

excess kurtosis than AAA bonds. The correlation patterns are very similar to the 

correlations reported for yields. The lowest correlations among all corporate bonds are 

those between the returns of the AAA/AA categories and the returns of B/CCC bonds.  

                                                 
5 We use the average time-to-maturity of the corporate bonds available in TRACE which is equal to 7.8 
years. 
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Yields-to-maturity for the 3-month Treasury bill, the 10-year government bond 

and Moody’s Baa corporate bond series are obtained from the Federal Reserve 

Statistical Releases. We then compute two state variables based on these interest rates: a 

term structure slope (Term), computed as the difference between the 10-year 

government bond and the Treasury bill rate, and a default premium (Default), calculated 

as the difference between Moody´s yield on Baa corporate bonds and the 10-year 

government bond yield.  

We collect from National Accounts four alternative proxies for macroeconomic 

growth as well as the price deflator. Monthly data for the industrial production index 

(IPI) are downloaded from the Federal Reserve, with series identifier G17/IP Major 

Industry Groups. Seasonally adjusted consumption expenditures and price indexes on 

nondurable goods and services come from National Income and Product Accounts 

(NIPA) Tables 2.8.5 and 2.8.4, respectively, available at the Bureau of Economic 

Analysis. Population data are from NIPA’s Table 2.6. This information is used to 

construct real per capita consumption expenditures on nondurable goods and services 

and the corresponding inflation rate. Additionally, we also employ aggregate per capita 

stockholder consumption growth rate computed as in Malloy, Moskowitz, and Vissing-

Jorgensen (2011). Exploiting micro-level household consumption data, these authors 

show that long-run stockholder consumption risk explains the cross-sectional variation 

in average stock returns better than the aggregate consumption risk obtained from 

nondurable goods and services. On top of that, they report plausible risk aversion 

estimates. They employ data from the CEX for the period from March 1982 to 

November 2004 to extract consumption growth rates for stockholders, the wealthiest 

third of stockholders, and non-stockholders. In order to extend their available time 

period, they construct factor-mimicking portfolios by projecting the stockholder 
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consumption growth rate on a set of instruments, and use the estimated coefficients to 

generate a longer time series of instrumented stockholder consumption growth. We 

employ these reported estimated coefficients for generating a factor-mimicking 

portfolio with the same set of instruments for stockholder consumption during our 

sample period. The last macroeconomic indicator is the non-farm employment growth 

rate which comes from the Bureau of Labor Statistics, “B” tables of the seasonal 

adjusted employment situation release. 

Figure 2 displays aggregate per capita consumption, stockholder consumption, and 

employment annual growth rates from 1960 to 2011. The time series behaviour of 

aggregate consumption and employment growth rates is very similar, being smoother 

than the growth rate of stockholder consumption. However, the troughs and peaks of the 

three series tend to have the same time location. On the other hand, as expected, these 

peaks are much more pronounced for stockholder consumption growth than for either 

aggregate consumption or employment growth.  

Daily data on VIX is obtained from the Chicago Board Options Exchange 

(CBOE) and the last day of each month is used to create a final monthly option-implied 

volatility series.  

We use the Pastor and Stambaugh (2003) measure of market-wide illiquidity, 

which reflects the amount in which stock returns rebound upon high volume. Their 

measure is based on daily regressions of individual stock excess returns over the market 

return in a calendar month, 

                  
( )[ ] 1t,jt,j

em
tj,tj,

em
1t,j eDVol   R sign  gR baR ++ +++=   ,                          (2) 

where em
1t,jR +  denotes the excess return of stock j over the market return. Pastor and 

Stambaugh aggregate the estimates of the g coefficient across stocks and scale it for 

growing dollar volume. They finally propose the innovations in this regression as the 
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final measure of illiquidity.6 The intuition is that high volume moves prices away 

equilibrium and they rebound the following day, which suggests that g is typically 

negative.  

 Finally, we also employ two additional indicators to capture economic risk: the 

volatility of consumption growth and stockholders consumption growth. Volatilities are 

the square of the residuals from a twelve lag auto-regressive estimate.    

Table 2 contains descriptive statistics for the financial and macroeconomic 

indicators used throughout this research. Annualized volatility is relatively high for 

industrial production and stockholder consumption growth, VIX, and especially market-

wide illiquidity. VIX is highly and positively correlated with the default premium and 

negatively correlated with macroeconomic variables, especially stockholder 

consumption growth, and employment growth. In terms of monthly growth, 

employment presents a higher correlation with industrial production and aggregate 

consumption than with stockholder consumption, and the default premium has a 

negative correlation with industrial production, consumption, and especially with 

employment growth.  

 

4. Preliminary Evidence on Conditional Corporate Bonds Volatility 

Given the lack of existing studies on corporate bond volatility, and before comparing 

the more elaborate GARCH-MIDAS model with the classical GARCH, we study some 

properties characterizing corporate bond volatilities using the traditional GARCH (1, 1) 

specification and the dynamic conditional correlation (DCC) framework.  

Figure 3 contains the conditional volatility estimated from a GARCH (1, 1) model 

for three representative credit ratings, i.e., AAA, BBB, and CCC corporate bonds. The 

                                                 
6 The monthly series are available in Lubos Pastor´s web site. 
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behavior displayed by conditional volatilities shows the expected pattern. The 

conditional volatility of CCC (right axis) is not only systematically above the 

conditional volatilities of the other two ratings, but also presents larger peaks during 

crisis periods. Thus, estimated conditional volatilities are dominated by the huge 

increase after October 2008, as a consequence of the Lehman Brothers crisis. The 

volatility of CCC bonds rises in the following months to 154%, whereas those for AAA 

and BBB bonds (left axis) increase to 14% and 33% respectively. Except for the 

different rise during the crisis, there is no significant difference between the levels of 

volatilities of AAA and BBB bonds. However, it is important to note that the volatility 

of volatility is higher for BBB bonds relative to AAA bonds. Indeed, we know that the 

excess kurtosis of BBB is much higher than the kurtosis of AAA bonds.  

The evidence on ARCH structures is clear in all cases from the autocorrelation 

functions for monthly squared returns. This evidence is displayed in Figures 4.a and 4.b 

for AAA and CCC bonds, respectively.7 A GARCH (1, 1) seems to capture the 

persistence in volatility appropriately, as indicated by the comparison between 

autocorrelation functions of squared returns and standardized squared returns using the 

estimated GARCH (1, 1) conditional volatility. The usual statistics to test for possible 

specification errors, such as autocorrelation of standardized squared residuals using the 

estimated conditional volatilities or Lagrange multiplier tests for ARCH structures, do 

not detect any obvious misspecification for any rating class.  

Given that we are specifically interested on the information content of 

macroeconomic and financial indicators regarding corporate bond volatility, we 

estimate again the GARCH (1, 1) model adding either an economic or a financial state 

variable as an explanatory volatility factor. Table 3 reports the results using our set of 

                                                 
7 The evidence on the persistence of volatility is even more noticeable for daily squared returns, but for 
the sake of the argument in this section, we just analyze monthly returns. 
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indicators and corporate bond returns for the two extreme rating categories, namely 

AAA and CCC bonds. Once again, the empirical evidence shows reasonable economic 

results. For both AAA and CCC bond returns, higher growth rates of consumption, 

stockholder consumption, and employment reduce their volatility and higher market 

equity volatility (VIX), market-wide illiquidity, and consumption volatility significantly 

increases their volatility. Additionally, industrial production growth is also negatively 

related to the volatility of AAA bond returns while the risk of default significantly 

affects the volatility of the bonds returns in the highest risk class.  

Finally, Figure 5 displays the estimated dynamic conditional correlations between 

pairs of AAA, BBB, and CCC bond returns, suggesting some differences in their 

determinants or in their reactions to shocks in them. The estimated correlation between 

AAA and CCC bonds is positive but relatively small. The low values of this correlation 

suggest that while AAA and CCC bond returns tend to respond to a given change in 

their common determinants by moving in the same direction, its overall impact is 

relatively small. The conditional correlation between BBB and CCC bond returns is 

indicative of a more similar reaction to common determinants. AAA and BBB bond 

returns seem to experience similar reactions, with a high and positive conditional 

correlation over the whole sample. The three conditional correlations experience a sharp 

increase in October 2008, reflecting the fact that the increased risk perception produced 

by the fall of Lehman Brothers initially led to a downturn in returns for most assets. The 

correlations of both AAA and BBB bond returns with CCC returns initiated a gradual 

comeback to their long-run average that still continued at the end of our sample. 

Interestingly, AAA and BBB returns experience a decoupling process after the October 

2008 peak, with their correlation falling well below its long-run average. That might be 

a reflection of the fact that over the last four months of 2008, CCC and BBB bonds lost 
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77% and 19% of their value, respectively, while AAA bonds decreased by only 2%. A 

simple exercise that assumes an investment of $1.00 at the beginning of our sample 

period shows that, by the end of our sample in January 2012, CCC bond prices still 

were at 30% of their initial value. Gains from investments in AAA and BBB bonds 

would have also been lost by the summer of 2008. Since then, AAA and BBB bonds 

yielded a 35% and16% return, respectively, in the three years before the end of the 

sample. 

The different levels and dynamics of correlation between pairs of bonds in 

different risk classes show the different nature of their returns and justify a formal and 

more rigorous analysis of their volatility. 

 

5. The Multiplicative GARCH-MIDAS Two-Component Model of Volatility 

The essence of the MIDAS approach is to consider data with different sampling 

frequency. In our case, we combine daily data for the returns of corporate bonds across 

different credit ratings with monthly data for the macroeconomic and financial 

indicators.   

Let t,ir  be the return on a bond on day i of month t, and tN  is the number of 

business days within this month. We assume that daily returns follow a statistical 

structure given by 

                                                       t,it,ir ηµ += ,                                                          (3) 

where t,iη  is an innovation normally distributed with zero mean and conditional 

variance t,it
2
t,i gτσ = , where t,ig  is the high-frequency component following a unit 
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GARCH(1, 1) process, and tτ  is the stochastic low-frequency component.8 Thus, the 

return can be written as 

t,it,itt,i gr ετµ +=                                                   (4) 

where t,iε  is a shock with distribution N(0,1) given the information available up to day 

( )1i −  of month t. 

 As in Engle, Ghysels, and Sohn (2013), we assume that the volatility dynamics 

of the component t,ig  is a daily GARCH(1, 1) process given by  

( ) ( )2

1,

, 1,1 i t

i t i t
t

r
g g

µ
α β α β

τ
−

−

−
= − − + +                                (5) 

where 1α β+ < . 

 On the other hand, the low-frequency (monthly) component tτ  is assumed to 

respond to economic conditions over a relatively long period of time where these 

conditions are represented by either macroeconomic or financial indicators. Thus, in the 

spirit of MIDAS regression and filtering, the tτ  component is assumed to be a 

smoothed measure of past values of some driving variable.9 

( )1, 2,

1

log ,  
lK

t l l k l l t k

k

m Xτ θ φ ω ω −
=

= + ∑ .                                     (6) 

In our case, X denotes either the level or the variance of a macroeconomic or financial 

indicator. In this specification, the low-frequency component log( )tτ varies from month 

                                                 
8 Note that in the original two-component model of Engel and Rangel (2008) the low frequency 
component is deterministic, while in this specification tτ  is stochastic. This is the modification suggested 

by Engle, Ghysels and Sohn (2013). 
9 In the usual MIDAS approach, the low-frequency component is a smoothed measure of the realized 
variance of the asset itself. This can be easily introduced in the specification above. However, in this 
research, we will focus on the impact that either macroeconomic or financial indicators have on the future 
variance of asset returns. 
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to month but it stays the same for all days in a given month. This is the GARCH-

MIDAS model with fixed time span indicator.10  

As in Engle, Ghysels, and Sohn (2013), we assume the expectation of the high-

frequency component to be equal to its unconditional expectation ( 1 ,( ) 1t i tE g− = ) at the 

beginning of the period. Therefore, the long-run component is given by, 

( )[ ] ( ) tt,i1tt
2

t,i1t gErE ττµ ==− −− .                                    (7) 

Finally, we assume a beta weighting scheme for equation (6), given by 
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As discussed by Ghysels, Sinko, and Valkanov (2006), this beta-specification is very 

flexible, being able to accommodate increasing, decreasing or hump-shaped weighting 

schemes.  

The model can be estimated using log-likelihood techniques. For each credit rating 

and for each financial or macroeconomic indicator, using either level or volatility 

values, we estimate the set of parameters ( )21,,,m,,, ωωθβαµΘ =  by maximizing the 

following log-likelihood,  
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10 It can be easily extended to allow for a rolling window structure, which we do not pursue in this paper. 
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6. In-Sample Estimates of GARCH-MIDAS Model of Corporate Bond Volatilities 

with Financial and Macroeconomic Indicators 

Next, we estimate the GARCH-MIDAS model given by expressions (4), (5), and (6) 

where the weights applied to past values of the indicators are given by the beta-

weighting scheme in (8). For each credit rating and each financial or macroeconomic 

indicator we maximize the log-likelihood function given by (9). The number of lags in 

the long-run component, K, is different for each corporate bond and indicator, and in all 

cases, we employ the lag that maximizes the log-likelihood function. The estimation 

combines the daily return data for corporate bonds with the monthly data for the 

financial and macroeconomic indicators. 

The empirical results are reported in Table 4.a through Table 4.k, where each table 

corresponds to a particular financial or macroeconomic state variable and contains the 

results for all credit rating categories. We report the estimated parameters given by the 

set ( )21,,,m,,, ωωθβαµΘ =  with the standard errors in parentheses, the value of the 

log-likelihood function, and the likelihood ratio obtained by comparing the estimated 

model with the nested benchmark model given by the specification with constant long-

run component. In brackets, below the likelihood ratio statistic, we report its p-value.11 

In all cases, the α  and β  parameters of the short-run component given by the unit 

GARCH process are estimated with precision and present reasonable and similar values 

across all state variable indicators. In general for all rating classes, the estimated mean 

for the short-run dynamics is close to zero, as expected in daily return data. The average 

estimated alpha (beta) for the AAA bond is slightly higher (lower) than for the CCC 

bond, and the persistence, measured as the sum of both parameters, is also slightly 

                                                 
11 We recognize that a potentially serious issue of fitting the model many times separately is multiplicity. 
The significance of results for some indicators in some scenarios might just be because of chance, even 
though they might not be significant. Therefore, interpretation of our results must be made with caution. 
In any case, the out-of-sample exercise we report later in the paper alleviates this issue. 
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higher for the CCC bond. The exception is the B rated bond for default premium, term 

premium, illiquidity, and consumption volatility, for which we estimate a higher alpha 

relative to other bonds and indicators.  

Estimated weights tend to vary across cases presenting different shapes ranging 

from monotonically decreasing to hump-shaped weights, and the lag attaining the 

maximum value also varies across ratings and state variable indicators. It is also the 

case that the weight parameters tend to be estimated with low precision. Given that we 

take logs to estimate the long-run component, the mean of the long-run component, m, 

is negative by construction and it is estimated with precision in all cases.  

We are particularly interested in the slope parameter of the long-run component, 

θ . It indicates whether the past behavior of a financial or macroeconomic indicator 

anticipates either an increase or a decrease in the volatility of corporate bond returns. It 

turns out that, independently of the corporate bond rating, θ  is strongly significant for 

most indicators. Moreover, the long-run component coefficient is significant for bonds 

in the extreme risk class for all state variables employed in estimation. This suggests 

that the recognition of the long-run component is a key factor for a better understanding 

of the behavior of the volatility of corporate bond returns. The θ  estimates tend to have 

the expected sign. They are positive when an increase in the state variable implies a 

negative shock for the economy, and negative for those cases in which an increase 

represents a positive shock. Overall, we find that increasing values of the default 

premium, VIX, illiquidity, inflation, and consumption volatility anticipate higher future 

volatility of corporate bond returns, while increasing values of production, 

consumption, or employment growth as well as the term premium, anticipate lower 

volatility in corporate bond returns. Moreover, although the sign is exactly what we 
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expected, the relative impact of the indicator on the long run component of the bond 

volatility is quite different across credit rating categories.  

In order to appreciate this point, Figure 6.A and Figure 6.B display the θ  

estimates for state variable indicators that generate more and less volatility respectively 

across credit rating categories. For a better comparison, θ  is divided by its cross-

sectional standard deviation across credit ratings. Analyzing bad-news indicators, VIX 

seems to be the most relevant factor explaining corporate bond returns volatilities for all 

credit ratings, although the impact of VIX is especially large for the BB, B, and CCC 

categories. Similarly, the default premium presents an increasing impact when we move 

from AAA to CCC bonds. Together with VIX, they become the key factors generating 

the trend of return volatility for CCC bonds. Consumption volatility also has a similar, 

although smoother, increasing pattern across ratings, but it becomes less relevant for 

CCC bonds. On the other hand, stockholder consumption volatility seems to have a 

higher impact on the AAA category.12 Finally, inflation, and market-wide illiquidity 

become more important the lower is the credit rating class.13 Hence, in terms of CCC 

bonds, VIX, the default premium, inflation, and illiquidity shocks are the most relevant 

indicators of bond return volatility, while VIX and stockholder consumption volatility 

dominate the volatility of AAA bonds. On the good-news side, industrial production 

growth is practically the most relevant factor anticipating a reduction in corporate bond 

volatility for all rating classes. Consumption and employment growth are also 

macroeconomic state variables explaining a long-run reduction in volatility. It is 

interesting to point out that these macroeconomic indicators seem to have more impact 

                                                 
12 This is an intriguing result that deserves more attention. It may easily be the case that stockholder 
consumption is a relevant state variable not only for equities but also for corporate bonds as long as they 
are the less risky bonds financing the companies. 
13 It is well known that inflation is one of the key variables explaining discount factors for government 
bonds. Higher expected inflation makes future money less appealing, so discount rates decrease. This 
effect seems to be especially relevant the higher the risk of the bond. The effect of inflation risk expands 
with the risk of corporate bonds.  
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on the BB and B categories than on CCC bonds. Indeed, the effects of production, 

consumption, and employment growth on the volatility of AAA and CCC are quite 

similar, but less than for the BB and B bonds.  

Finally, we must test the in-sample overall statistical significance of the model 

specification that incorporate a stochastic behavior for the long-run component of 

volatility relative to the specification in which the low-frequency component is assumed 

to be constant. Hence, the benchmark model is the GARCH-MIDAS model with 

constantτ . The last column of Tables 4.a to 4.k provides the likelihood ratio test 

statistic and the corresponding p-value. Out of the 77 cases analyzed (11 state variable 

indicators by 7 credit rating categories), in 54 cases the test indicates a statistically 

significant improvement in fitting the data when incorporating the stochastic long-term 

volatility component. It also implies that a number of macroeconomic and financial 

indicators contain relevant information concerning future conditional volatility of 

corporate bond returns. Moreover, for some of the most relevant indicators, i.e. VIX, 

industrial production, and consumption and employment growth, we always reject the 

constantτ specification. The default premium, inflation, market-wide illiquidity, 

stockholders’ consumption growth and aggregate consumption volatility contain 

explanatory power on future volatility of bond returns for the lower rating classes (BB 

and below). The volatility of stockholder consumption seems to contain information on 

future volatility for high credit rating bonds. 

 

7. Interpreting the Role of Economic Indicators in In-Sample Volatility Estimation 

Since we have just shown that there is ample evidence of information content in 

macroeconomic and financial indicators on future bond returns volatility for all bond 

classes, the next step is to try to advance some intuition on this evidence. To that end, 
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we split the sample between recession and normal/expansion periods to examine the 

different behavior of AAA and CCC bond return volatility in each sub-sample. The 

approach we follow is that having shown a generally better likelihood fit for the 

GARCH-MIDAS model, we take any significant departure from its implied volatility 

relative to the constant-τ volatility as an improvement in volatility estimation. 

Figures 7a and 7.b show the differences between volatility estimates from the 

GARCH-MIDAS approach using macroeconomic indicators and the constant-τ 

approach for the AAA and CCC bonds respectively. Regarding high credit quality 

bonds, and for most of the sample period, the GARCH-MIDAS method with 

macroeconomic indicators generates higher volatility than the constant τ-approach. 

These differences sharply decline over the first half of the recent recession period. In 

fact, from October of 2008 until the official end of the crisis, the model specification 

without macroeconomic indicators generates higher volatility. It seems that the 

recognition of macroeconomic indicators during crisis smoothes volatility of AAA 

bonds relative to the constant τ-approach. On the other hand, for CCC bonds, the 

difference keeps changing from positive to negative depending upon the economic 

situation. The differences become much larger during recessions, and they become 

positive at the end of recessions and the beginning of expansions when the volatility of 

the GARCH-MIDAS model is higher than the volatility generated under the constant τ-

approach. 

Figures 8.a and 8.b contain the differences in volatilities for key selected financial 

indicators as VIX and default premium. For AAA bonds, the GARCH-MIDAS model 

seems to generate less volatility for both indicators during recession periods, but for 

CCC bonds, this is only the case for VIX. 
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To examine whether this graphical evidence leads to statistically significant 

conclusions on the comparison between the characteristics of the time series of 

volatility estimated from both modeling strategies, we use a simple regression approach: 

                              tt
Cnt
t

GM
t uEXPANSIONˆˆ +×+=− βασσ ,                         (10) 

where GM
tσ̂  is the volatility generated by the GARCH-MIDAS model, Cnt

tσ̂ is the 

volatility obtained under the constant-τ  specification, and EXPANSION is a dummy 

variable that takes the value of 1 whenever month t does not belong to the NBER 

official recession dates, and zero otherwise. This implies that the intercept α is the 

average difference between the volatilities generated by both models over recessions, 

while the slope β indicates how the difference in estimated volatilities changes in 

normal/expansions times, relative to recession periods. The sum α + β is the average 

difference of volatilities over normal/expansion times.  

For both AAA and CCC corporate bonds, Table 5 contains estimates of the 

intercept and the slope in each regression, as well as the p-values for the significance 

tests, obtained using standard errors robust to the presence of heteroskedasticity and 

autocorrelation. In the interpretation that follows we will focus on coefficients estimated 

with a p-value below 0.10.  

Coefficient estimates are consistent with our previous comments on the time 

behavior of volatility from both types of models over recession and expansion times. 

For AAA bonds, we obtain a positive intercept for most of the macroeconomic 

indicators, reflecting the observation that the GARCH-MIDAS volatility is, on average, 

higher in recession periods than the constant-τ volatility estimate. This is the case 

despite the sharp decline of the difference between both volatility estimates during the 

last part of the recent financial crisis, as reflected in Figure 7.a. On top of this, the 

differences between normal/expansion periods and recessions are positive, as also 
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displayed in Figure 7.a, and statistically significant. For key financial indicators, as the 

default premium and VIX, the intercept is negative and significantly different from zero, 

meaning that average GARCH-MIDAS volatility is in this case lower than the constant-

τ volatility. In normal/expansion times the volatility estimated with the default premium 

and VIX is significantly higher than the constant-τ volatility. Hence, during recessions, 

and for AAA bonds, decreasing (increasing) values of macroeconomic (financial) 

indicators make the GARCH-MIDAS generated corporate bond volatilities to be higher 

(lower) on average than the constant-τ volatility. Relative to macroeconomic indicators, 

bad news captured by financial indicators during recessions generate short-term noise 

that make the volatility from the pure GARCH specification to be higher than the 

volatility from MIDAS-GARCH model. This behavior is displayed in Figure 8.a for the 

default premium and VIX. Similarly, during normal/expansion times, increasing 

(decreasing) value of macroeconomic (financial) variables always increase the 

GARCH-MIDAS volatility relative to the constant-τ volatility. Thus, we may conclude 

that the recognition of state variables in the behavior of AAA bonds have a significant 

impact both during recessions and normal/expansion periods.  

For CCC bonds, volatility estimates from the GARCH-MIDAS approach are, on 

average, lower in recessions than the constant-τ volatility estimate, leading to negative 

intercept estimates. Slope estimates have in all cases the opposite sign to the 

corresponding intercept, leading to a much less consistent difference between the 

volatility estimates from both modeling approaches in normal/expansion times across 

indicators. Important exceptions are VIX, and the volatility of both measures of 

consumption, where the GARCH-MIDAS model generates more volatility during 

normal/expansion times than the constant-τ volatility specification. Hence, our estimates 

suggest that the use of indicators to estimate volatility is of interest for AAA bonds in 
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any conditions, whereas in the case of CCC bonds, it is mostly interesting around 

recession periods. 

 

8. Out-of-Sample Predictions of the GARCH-MIDAS Model with Financial and 

Macroeconomic Indicators Relative to the Constant-τ Volatility Specification. 

The in-sample analysis suggests that the GARCH-MIDAS model with a state variable 

in the secular component of volatility helps explaining the behaviour of future volatility 

of corporate bonds, and for some indicators this is true independently of the credit rating 

category. However, the in-sample analysis and the likelihood ratio test may favour more 

complicated models due to over-fitting and large sample size. The out-of-sample 

prediction is relevant when comparing models with different complexity and it might 

help to reinforce the results reported previously. Because of the high correlations 

between some of state variables and also to avoid over-parameterization, it should be 

noticed that state indicators have been included one at a time in the low-frequency 

component. We now propose an out-of-sample exercise to compare the potential 

improvement in the forecasting ability of corporate bond volatilities for each indicator.   

The out-of-sample test divides the full sample in two subsamples: the estimation 

period, with T1 days, and the forecasting period, with T2 = T - T1 days. In the first 

subsample, we estimate the parameters of the constant-τ GARCH volatility (model 1) 

and the GARCH-MIDAS specification for each indicator (model 2). Then, with these 

estimated parameters, we generate the bond returns implied by each model for each of 

the T2 days in the second subsample, and compute their daily standard deviation using a 

rolling window of 21 past daily returns. This standard deviation will then be compared 

with the standard deviation computed from realized bond returns in order to measure the 

forecasting errors.  
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 More specifically, we divide the entire sample in two sub-periods with 

approximately the same number of observations; the estimation period employs 

information regarding each day between January 1997 and August 2004, and the 

forecasting period includes each day between September 2004 and January 2012. Using 

the parameters estimated in the estimation period, and for each day in the forecasting 

period, returns implied by the traditional constant-τ model (model 1) are obtained as  

                                                           m̂ˆ t =τ                                                      (11a) 

                                ( ) ( )
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                                                 t,it,itt,i ĝˆˆr̂ ετµ += ,                                        (11c) 

where ,i tε  is a standard Gaussian variable with T2 realizations. The series for the return 

volatility is computed as   

                                        ( ), 21,ˆ ˆ ˆ, , 12Cnt
i t i t itSD r rσ −= K .                                  (11d) 

Similarly, returns implied by the GARCH-MIDAS model (model 2) for each 

indicator, and their volatility are obtained as 
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ˆ

ˆr̂
ˆˆˆ1ĝ −

− +
−

+−−= β
τ

µ
αβα                      (12b)  

                                                 t,it,itt,i ĝˆˆr̂ ετµ +=                                          (12c) 
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where the random shock, ,i tε , is the same as in model 1. 

The mean squared error (MSE) for each model is defined as 
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where ( )Re
, 21, ,, , 12al

i t i t i tSD r rσ −= K , and ,i tr  are realized bond returns. 

Finally, the MSE from the two models are compared through the statistic:14 
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 A positive value for the F statistic indicates that the volatility mean squared 

forecasting error is lower for the GARCH-MIDAS specification with a state indicator 

modeling the secular volatility component than for the constant-τ GARCH specification. 

The same intuitive argument applies for a comparison across different indicators.       

Panels A and B of Table 6 contain the out-of-sample results for each financial or 

macroeconomic indicator for the AAA and CCC corporate bonds, respectively. First 

row provides the F values from expression (14). Starting with AAA bonds, only three 

state variables seem to improve the forecasting ability of the GARCH-MIDAS model 

relative to the constant-τ volatility specification: The term structure slope, consumption 

growth, and VIX, where the statistic is especially large for consumption growth and 

VIX. Results for the other state variables indicate that the standard GARCH 

specification produces lower forecasting errors than the GARCH-MIDAS model. On 

the other hand, the results for the CCC rated bonds are completely different. All 

indicators, with the exception of inflation, reduce the forecasting errors with relation to 

the constant-τ model. Now, F values are much higher than for the AAA case, and the 

                                                 
14 See McCraken (2007) for a formal discussion about this statistic. 



 
 

28 

cases of the default premium, VIX and the volatility of stockholders consumption are 

especially remarkable.15 

In order to analyze the dependence of the results to the specific simulated values 

for the shock ,i tε , we repeat the exercise for 100 different simulations. The second row 

in Table 6 provides the mean of the 100 values for the F statistic, the third row provides 

the number of cases in which F > 0 within the 100 simulations, and Figures 9.a and 9.b 

plot the 100 values for the MSE from model 1 (constant-τ GARCH) and form model 2 

with some selected indicators. Results in the second and third rows of Table 6 confirm 

previous conclusions. In the case of AAA bonds, 97 and 94 times out of 100, the use of 

consumption growth or VIX in the specification of the secular component of the bond 

volatility substantially improves the prediction. Moreover, in 92 out of 100 cases the use 

of the term structure slope also reduces the MSE, although the statistic suggests a much 

lower improvement relative to VIX or consumption growth. For other indicators, such 

as IPI or aggregate illiquidity, the more complex GARCH-MIDAS specification makes 

worse the volatility prediction. These results are illustrated in Figure 9.a. On the other 

hand, the volatility of CCC rated bonds is clearly better predicted by using the default 

premium, employment growth, VIX or the volatility of consumption growth as 

indicators for its long-run component. Such large improvement is illustrated in Figure 

9.b.        

 

 

                                                 
15 It must be noted that the loss differences in expression (14) are measured with error. This implies that 
the exact distribution of the statistic is also unknown and the asymptotic distribution can only be obtained 
under restrictive assumptions that include non-nested models. For the case of nested models, Clark and 
McCracken (2012) suggest deriving the asymptotic distribution by a fixed regressor bootstrap and show 
that the test statistic based on the proposal bootstrap has good size properties and reasonable finite-sample 
power. Unfortunately, the framework in which the F-statistic and the corresponding statistical inference 
are developed by McCraken (2007) and Clark and McCraken (2012) do not correspond to our framework. 
For this reason we do not provide the p-values estimated under the F-statistic given by (14). 
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9. Conclusions 

It is surprising how little we know about the time series behaviour of the volatility of 

corporate bond returns and about the cross-sectional differences in volatility across 

credit ratings. This paper studies the explanatory power of macroeconomic and financial 

indicators on the volatility of corporate bonds for seven credit rating categories using a 

GARCH-MIDAS approach to separate the short-run and long-run sources of corporate 

bond volatility. A likelihood ratio in-sample test suggests that, for most indicators, 

recognizing the secular component of volatility helps explaining the behaviour of future 

volatility of corporate bonds independently of the credit rating category. More 

specifically, out of the 77 possible cases analyzed (across 11 indicators and 7 credit 

ratings), in 54 cases the likelihood ratio test suggests a statistically significant 

improvement in fitting the data when incorporating the stochastic long-term volatility 

component. For VIX, the term structure slope, and industrial production, consumption, 

and employment growth we always reject the constant-τ volatility specification. The 

default premium is also a very important financial indicator but its influence is 

particularly concentrated on low-credit rating categories like BB, B, and CCC corporate 

bonds.  

Paying attention to the extreme rating classes, we obtain that VIX, the default 

premium, inflation, and illiquidity shocks are the most relevant indicators of bond return 

volatility for CCC bonds, while VIX and stockholder consumption volatility dominate 

the volatility of AAA bonds. On the good-news side, industrial production growth is 

practically the most relevant factor anticipating a reduction in corporate bond volatility 

for all rating classes.  
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A detailed analysis over the sample period suggests that the use of indicators to 

estimate volatility is of interest for AAA bonds in any conditions, whereas in the case of 

CCC bonds, it is mostly interesting around recession periods. 

Finally, the out-of-sample analysis shows signs of improvement of the GARCH-

MIDAS model relative to the constant-τ volatility specification. In the case of AAA 

bonds this result holds for the term structure slope, consumption growth, and VIX. 

However, the recognition of the long-run component is especially relevant for 

forecasting volatility of junk-bonds, where most macroeconomic and financial 

indicators improve the forecasting ability of the model. It is interesting to note the 

relevance of aggregate macroeconomic and financial risks when estimating the volatility 

of CCC corporate bonds. 
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Table 1. Corporate bond characteristics by credit rating 
 

PANEL A: Annualized Yields to Maturity 
 AAA AA A BBB BB B CCC 

Mean 5.01 5.13 5.64 6.38 8.08 10.01 16.33 

Volatility 4.70 4.74 4.48 4.45 6.03 8.87 21.15 

Skewness -0.25 -0.03 0.15 0.43 1.52 1.25 1.13 

Exc. Kurtosis -0.54 -0.99 -0.69 -0.12 3.92 1.94 0.64 

Max 7.57 7.84 9.38 10.23 15.99 20.58 38.34 

Min 1.97 2.60 3.24 4.17 5.60 6.79 9.13 
Correlations AAA AA A BBB BB B CCC 
AAA 1 0.97 0.91 0.81 0.49 0.43 0.35 

AA  1 0.97 0.87 0.58 0.52 0.39 

A   1 0.95 0.73 0.67 0.54 

BBB    1 0.89 0.84 0.74 

BB     1 0.95 0.87 

B      1 0.94 
PANEL B: Annualized Corporate Bond Returns 

 AAA AA A BBB BB B CCC 
Mean 2.35 2.08 

 
1.84 

 
1.50 

 
1.25 

 
1.15 

 
0.56 

 Volatility 7.57 
 

7.04 
 

7.58 
 

7.97 
 

13.50 
 

18.54 
 

37.87 
 Skewness -0.17 

 
-0.15 

 
-0.56 

 
-2.11 

 
-2.72 

 
-0.94 

 
-0.52 

 Exc. Kurtosis 5.94 
 

3.15 
 

5.13 
 

15.67 
 

21.48 
 

6.51 
 

8.41 
 Max 1.23 

 
1.06 

 
1.09 

 
0.81 

 
1.19 

 
2.29 

 
5.38 

 Min -1.31 
 

-1.02 
 

-1.29 
 

-2.01 
 

-3.68 
 

-3.35 
 

-6.96 
 Correlations AAA AA A BBB BB B CCC 

AAA 1 0.86 
 

0.81 
 

0.63 
 

0.26 
 

0.18 
 

0.18 
 AA  1 0.97 

 
0.80 

 
0.47 

 
0.37 

 
0.31 

 A   1 0.88 
 

0.59 
 

0.51 
 

0.44 
 BBB    1 0.71 

 
0.62 

 
0.53 

 BB     1 0.81 
 

0.74 
 B      1 0.82 
 These statistics are based on daily data from January 1997 to January 2012 
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Table 2. Descriptive statistics of macroeconomic and financial indicators 
 

 Default Term IPI Inflation Cons. 
Stock. 
Con. 

Employ. VIX Illiquidity  

Mean 2.53 1.75 1.46 2.59 1.26 2.60 0.60 22.67 -1.81 
Volatility 0.87 1.24 2.52 0.83 0.87 3.96 0.64 8.25 25.14 
Skewness 1.56 -0.07 -1.72 -1.23 -0.23 -0.80 -1.25 1.38 -0.54 
Exc. Kurtosis 3.60 -1.33 7.82 9.66 1.61 1.64 2.29 3.27 2.49 
Max 6.01 3.70 25.75 14.60 11.48 41.28 4.94 59.89 344.49 
Min 1.45 -0.53 -50.71 -15.25 -9.22 -47.09 -7.33 10.42 -324.42 

Correlations Default Term IPI Inflation Cons. 
Stock. 
Con. 

Employ. VIX Illiquidity  

Default 1.00 0.51 -0.46 -0.31 -0.37 -0.15 -0.80 0.71 0.16 

Term  1.00 -0.03 -0.07 -0.19 0.02 -0.40 0.22 -0.06 

IPI   1.00 0.09 0.34 0.03 0.53 -0.22 -0.12 

Inflation    1.00 0.04 0.10 0.23 -0.38 -0.02 

Consumption     1.00 0.14 0.41 -0.21 -0.10 

Stock. Con.      1.00 0.12 -0.44 -0.21 

Employment       1.00 -0.50 -0.12 

VIX        1.00 0.25 
These statistics are based on monthly data from January 1997 to January 2012 
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Table 3. Estimates of GARCH (1, 1) models with a state indicator 
 

 AAA CCC 
 Indicator 

Coefficient 
Log-

Likelihood 
Likelihood 

Ratio  
Indicator 

Coefficient 
Log-

Likelihood 
Likelihood 

Ratio  

Default 
0.0268 
(1.33) 

457.29 
23.18 

(0.000) 
0.3697 
(3.41) 

212.19 
28.42 

(0.000) 

Term 
0.0035 
(1.31) 

449.30 
7.20 

(0.007) 
0.0651 
(2.66) 

199.20 
2.44 

(0.118) 

IPI 
-0.0084 
(-3.85) 

459.69 
27.98 

(0.000) 
-0.0443 
(-1.67) 

198.84 
1.72 

(0.190) 

Inflation 
0.100 
(0.94) 

446.34 
1.28 

(0.258) 
-0.2371 
(-1.68) 

200.45 
4.94 

(0.026) 

Consumption 
-0.0156 
(-2.64) 

452.86 
14.32 

(0.000) 
-0.4487 
(-3.25) 

203.03 
10.10 

(0.001) 
Stockholder 
Consumption 

-0.0048 
(-2.31) 

459.01 
26.62 

(0.000) 
-0.0870 
(-4.08) 

209.04 
22.12 

(0.000) 

Employment 
-0.0409 
(-2.31) 

456.41 
21.42 

(0.000) 
-0.5995 
(-2.69) 

201.78 
7.60 

(0.006) 

VIX 
0.0028 
(4.27) 

453.96 
16.52 

(0.000) 
0.0268 
(4.25) 

219.03 
42.10 

(0.000) 

Illiquidity 
0.0017 
(3.75) 

451.98 
12.56 

(0.000) 
0.0171 
(4.05) 

204.66 
13.36 

(0.000) 
Consumption 
Volatility 

0.1252 
(3.97) 

455.26 
19.12 

(0.000) 
2.1797 
(3.47) 

203.49 
11.02 

(0.001) 
Stock. Con. 
Volatility 

0.0117 
(2.77) 

453.15 
14.90 

(0.000) 
0.2645 
(5.16) 

216.18 
36.40 

(0.000) 
This table provides estimates of the GARCH (1, 1) model for AAA and CCC corporate bonds with a 
representative macroeconomic or financial variable indicated in column 1 as an additional factor. t-
statistics in parentheses for indicator coefficients, and p-values in parentheses for the likelihood ratio test. 
The maximized log-likelihood function for the base case (without the additional factor) is 445.70 and 
197.98 for AAA or CCC bonds, respectively. Data from January 1997 to January 2012. 
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Table 4.a. Estimates of the GARCH-MIDAS volatility specification with Default 
 

 1ω  2ω  m  θ  α  β  µ  LogLike. L. Ratio 

AAA 
151.244 
(24.321) 

7059.68 
(1129.31) 

-12.208 
(0.121) 

48.616 
(4.339) 

0.049 
(0.005) 

0.920 
(0.009) 

7.09E-05 
(5.97E-05) 

16166.9 
32.179 
[0.000] 

AA 
6.960 

(21.756) 
0.500 

(2.494) 
-10.127 
(0.257) 

37.331 
(11.992) 

0.030 
(0.003) 

0.965 
(0.003) 

6.75E-05 
(5.89E-05) 

16163.0 
6.233 

[0.101] 

A 
-0.731 
(3.284) 

4.374 
(48.260) 

-11.733 
(0.225) 

29.320 
(8.759) 

0.038 
(0.004) 

0.949 
(0.005) 

5.43E-05 
(5.83E-05) 

16205.7 
5.115 

[0.164] 

BBB 
4.737 

(17.647) 
159.494 

(582.973) 
-11.801 
(0.134) 

30.273 
(4.844) 

0.040 
(0.004) 

0.936 
(0.007) 

6.5E-05 
(5.93E-05) 

16259.6 
9.594 

[0.022] 

BB 
-19.664 

(2.7E+10) 
69.547 

(8.9E+11) 
-12.941 
(0.059) 

80.320 
(2.178) 

0.055 
(0.002) 

0.856 
(0.004) 

1.53E-05 
(6.16E-05) 

16123.5 
323.814 
[0.000] 

B 
-32.653 

(1.0E+11) 
136.533 

(3.2E+12) 
-13.272 
(0.057) 

113.841 
(1.971) 

0.218 
(0.008) 

0.656 
(0.009) 

0.000153 
(5.02E-05) 

15652.1 
268.227 
[0.000] 

CCC 
-2.952 
(0.518) 

-2.993 
(0.516) 

-14.871 
(0.152) 

182.167 
(6.106) 

0.009 
(0.000) 

0.981 
(0.000) 

5.61E-05 
(9.05E-05) 

12537.0 
130.811 
[0.000] 

This table provides estimates of the GARCH-MIDAS model for the conditional variance of corporate 
bond returns where the long-run component is modeled as a function of past values of the state variable 
indicated in each table (default spread in this case). The weighting scheme is the “Beta” function and the 
number of lags is optimally determined. Numbers in parenthesis are standard errors. Column 9 reports the 
negative of the log-likelihood value at the optimum, and the last column provides the likelihood ratio test 
for model comparison, with its p-value in brackets. Daily data from January 1997 to January 2012     
 
 
 
 
 
Table 4.b. Estimates of the GARCH-MIDAS volatility specification with Term 
 

 1ω  2ω  m  θ  α  β  µ  LogLike. L. Ratio 

AAA 
2.885 

(2.133) 
1.220 

(0.831) 
-10.319 
(0.141) 

-42.428 
(8.186) 

0.050 
(0.005) 

0.926 
(0.008) 

6.48E-05 
(5.9E-05) 

16161.25 
20.826 
[0.000] 

AA 
2.498 

(1.583) 
1.465 

(0.840) 
-10.183 
(0.159) 

-48.494 
(9.964) 

0.027 
(0.003) 

0.965 
(0.003) 

5.70E-05 
(5.9E-05) 

16169.15 
18.590 
[0.000] 

A 
2.971 

(2.941) 
1.422 

(1.253) 
-10.467 
(0.179) 

-34.468 
(10.388) 

0.036 
(0.004) 

0.951 
(0.005) 

5.78E-05 
(5.8E-05) 

16208.89 
11.424 
[0.010] 

BBB 
3.472 

(2.479) 
1.707 

(1.104) 
-10.534 
(0.105) 

-33.022 
(5.785) 

0.035 
(0.004) 

0.946 
(0.006) 

5.89E-05 
(5.9E-05) 

16262.72 
15.757 
[0.001] 

BB 
2.030 

(0.171) 
1.184 

(0.104) 
-7.656 
(0.119) 

-189.651 
(6.256) 

0.046 
(0.001) 

0.944 
(0.001) 

4.09E-05 
(5.3E-05) 

16155.09 
387.015 
[0.000] 

B 
1.420 

(0.107) 
0.695 

(0.062) 
-8.033 
(0.090) 

-127.939 
(2.949) 

0.221 
(0.007) 

0.730 
(0.006) 

5.36E-05 
(4.0E-05) 

15614.13 
192.342 
[0.000] 

CCC  
8.075 

(0.860) 
9.178 

(1.018) 
-10.545 
(0.250) 

-99.646 
(8.471) 

0.020 
(0.001) 

0.974 
(0.000) 

2.90E-04 
(9.6E-05) 

12506.69 
 

70.192 
[0.000] 

See notes in Table 4.a. 
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Table 4.c. Estimates of the GARCH-MIDAS volatility specification with Industrial 
Production Growth 
 
 1ω  2ω  m  θ  α  β  µ  LogLike. L. Ratio 

AAA 
1.528 

(0.459) 
10.051 
(4.115) 

-10.836 
(0.066) 

-102.979 
(12.355) 

0.048 
(0.005) 

0.931 
(0.007) 

7.22E-05 
(5.99E-05) 

16160.8 
20.000 
[0.000] 

AA 
0.827 

(0.480) 
9.763 

(7.829) 
-10.817 
(0.085) 

-86.462 
(14.236) 

0.028 
(0.003) 

0.965 
(0.004) 

6.38E-05 
(5.88E-05) 

16173.9 
28.092 
[0.000] 

A 
0.309 

(0.503) 
3.815 

(5.796) 
-10.891 
(0.097) 

-71.763 
(24.033) 

0.034 
(0.004) 

0.957 
(0.005) 

5.94E-05 
(5.83E-05) 

16210.2 
14.081 
[0.003] 

BBB 
0.507 

(0.416) 
5.597 

(4.687) 
-10.939 
(0.057) 

-76.803 
(14.250) 

0.034 
(0.004) 

0.950 
(0.006) 

6.81E-05 
(5.90E-05) 

16264.6 
19.564 
[0.000] 

BB 
3.481 

(0.419) 
14.862 
(2.136) 

-10.686 
(0.019) 

-168.698 
(6.042) 

0.056 
(0.002) 

0.882 
(0.005) 

7.49E-05 
(5.47E-05) 

16137.0 
350.752 
[0.000] 

B 
2.751 

(0.224) 
46.666 
(4.796) 

-10.033 
(0.049) 

-182.226 
(3.377) 

0.110 
(0.002) 

0.860 
(0.003) 

1.52E-04 
(5.06E-05) 

15610.7 
185.440 
[0.000] 

CCC 
1.346 

(0.197) 
9.650 

(2.389) 
-11.463 
(0.132) 

-112.317 
(14.285) 

0.020 
(0.000) 

0.974 
(0.000) 

8.40E-05 
(9.43E-05) 

12485.0 
26.751 
[0.000] 

See notes in Table 4.a. 
 
 
 
 
 
Table 4.d. Estimates of the GARCH-MIDAS volatility specification with Inflation 
 

 1ω  2ω  m  θ  α  β  µ  LogLike. L. Ratio 

AAA 
2405.62 

(6.0E+08) 
74.807 

(1.9E+07) 
-11.020 
(0.122) 

46.579 
(16.552) 

0.045 
(0.004) 

0.946 
(0.004) 

6.62E-05 
(5.99E-05) 

16152.9 
4.124 

[0.248] 

AA 
1.523 

(7.273) 
0.189 

(1.314) 
-11.123 
(0.407) 

109.891 
(177.790) 

0.031 
(0.003) 

0.965 
(0.003) 

6.79E-05 
(5.85E-05) 

16161.3 
2.836 

[0.418] 

A 
3.074 

(49.415) 
0.562 

(5.458) 
-11.037 
(0.415) 

30.593 
(189.946) 

0.038 
(0.003) 

0.955 
(0.004) 

5.46E-05 
(5.81E-05) 

16203.2 
0.132 

[0.988] 

BBB 
5.336 

(60.405) 
2.287 

(18.907) 
-11.052 
(0.337) 

22.009 
(150.343) 

0.038 
(0.004) 

0.951 
(0.004) 

6.75E-05 
(5.9E-05) 

16254.9 
0.078 

[0.994] 

BB 
221.575 
(25.231) 

156.620 
(17.538) 

-11.325 
(0.078) 

290.548 
(14.373) 

0.019 
(0.000) 

0.978 
(0.001) 

2.7E-05 
(4.66E-05) 

16028.0 
132.854 
[0.000] 

B 
2.071 

(0.230) 
0.973 

(0.097) 
-7.746 
(0.231) 

-1106.73 
(97.674) 

0.065 
(0.001) 

0.929 
(0.001) 

7.81E-05 
(5.26E-05) 

15528.0 
20.031 
[0.000] 

CCC 
2.522 

(0.238) 
3.734 

(0.444) 
-15.206 
(0.327) 

1335.57 
(133.735) 

0.020 
(0.000) 

0.974 
(0.000) 

8.99E-05 
(8.89E-05) 

12489.8 
36.305 
[0.000] 

See notes in Table 4.a. 
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Table 4.e. Estimates of the GARCH-MIDAS volatility specification with Consumption 
Growth 
 

 1ω  2ω  m  θ  α  β  µ  LogLike. L. Ratio 

AAA 
3.334 

(1.000) 
12.784 
(5.126) 

-10.624 
(0.069) 

-323.751 
(33.276) 

0.050 
(0.005) 

0.927 
(0.007) 

7.30E-05 
(5.94E-05) 

16162.4 
23.032 
[0.000] 

AA 
3.389 

(0.680) 
19.340 
(5.607) 

-10.659 
(0.090) 

-278.012 
(40.443) 

0.028 
(0.003) 

0.965 
(0.004) 

5.65E-05 
(5.83E-05) 

16170.8 
21.823 
[0.000] 

A 
13.653 
(6.353) 

97.257 
(52.354) 

-10.704 
(0.161) 

-88.126 
(35.134) 

0.038 
(0.004) 

0.956 
(0.004) 

2.37E-05 
(5.86E-05) 

16207.9 
9.534 

[0.023] 

BBB 
37.332 

(86.908) 
298.347 

(756.864) 
-10.942 
(0.070) 

-85.152 
(25.270) 

0.034 
(0.003) 

0.955 
(0.004) 

6.58E-05 
(5.91E-05) 

16264.9 
20.026 
[0.000] 

BB 
5.424 

(0.268) 
46.331 
(2.700) 

-10.478 
(0.017) 

-403.830 
(11.866) 

0.038 
(0.002) 

0.897 
(0.005) 

7.40E-05 
(6.18E-05) 

16069.1 
214.960 
[0.000] 

B 
4.377 

(0.336) 
27.605 
(2.596) 

-9.756 
(0.066) 

-375.680 
(20.996) 

0.070 
(0.001) 

0.917 
(0.002) 

1.35E-04 
(4.59E-05) 

15532.2 
28.395 
[0.000] 

CCC 
4.807 

(0.221) 
38.894 
(2.256) 

-11.353 
(0.142) 

-292.740 
(21.177) 

0.020 
(0.001) 

0.974 
(0.000) 

-3.2E-05 
(9.34E-05) 

12491.1 
38.947 
[0.000] 

See notes in Table 4.a. 
 
 
 
 
Table 4.f. Estimates of the GARCH-MIDAS volatility specification with Stockholders 
Consumption Growth 
 

 1ω  2ω  m  θ  α  β  µ  LogLike. L. Ratio 

AAA 
1.048 

(0.123) 
2.157 

(0.511) 
-10.481 
(0.093) 

-212.898 
(31.933) 

0.049 
(0.005) 

0.930 
(0.007) 

6.53E-05 
(5.97E-05) 

16162.8 
23.993 
[0.000] 

AA 
2.258 

(0.951) 
14.954 

(10.138) 
-10.820 
(0.109) 

-42.833 
(19.735) 

0.028 
(0.003) 

0.967 
(0.003) 

5.88E-05 
(5.89E-05) 

16162.7 
5.621 

[0.132] 

A 
2.460 

(1.749) 
21.100 

(22.836) 
-10.921 
(0.110) 

-24.934 
(17.434) 

0.037 
(0.003) 

0.955 
(0.004) 

5.68E-05 
(5.82E-05) 

16204.4 
2.500 

[0.475] 

BBB 
0.368 

(0.521) 
0.076 

(0.515) 
-10.882 
(0.122) 

-53.891 
(41.171) 

0.038 
(0.003) 

0.951 
(0.004) 

6.38E-05 
(5.88E-05) 

16257.7 
5.623 

[0.131] 

BB 
7.673 

(0.531) 
7.583 

(0.474) 
-13.895 
(0.125) 

303.322 
(15.880) 

0.022 
(0.001) 

0.983 
(0.000) 

2.09E-05 
(4.48E-05) 

16029.7 
136.211 
[0.000] 

B 
0.890 

(0.064) 
1.216 

(0.113) 
-9.497 
(0.090) 

-300.036 
(26.167) 

0.058 
(0.001) 

0.933 
(0.001) 

3.12E-04 
(5.24E-05) 

15535.0 
34.058 
[0.000] 

CCC 
63.987 

(13.515) 
342.543 
(73.070) 

-11.977 
(0.162) 

-42.568 
(3.147) 

0.026 
(0.001) 

0.970 
(0.000) 

3.05E-04 
(8.52E-05) 

12520.1 
97.011 
[0.000] 

See notes in Table 4.a. 
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Table 4.g. Estimates of the GARCH-MIDAS volatility specification with Employment 
Growth 
 

 1ω  2ω  m  θ  α  β  µ  LogLike. L. Ratio 

AAA 
4.214 

(2.924) 
21.071 

(16.316) 
-10.859 
(0.054) 

-242.109 
(25.028) 

0.048 
(0.005) 

0.925 
(0.008) 

7.17E-05 
(6.00E-05) 

16163.2 
24.696 
[0.000] 

AA 
3.347 

(2.603) 
17.857 

(16.963) 
-10.813 
(0.084) 

-181.100 
(35.071) 

0.030 
(0.003) 

0.964 
(0.003) 

6.04E-05 
(5.88E-05) 

16165.4 
11.144 
[0.011] 

A 
89.081 

(66.620) 
339.025 

(248.422) 
-10.925 
(0.091) 

-113.308 
(36.564) 

0.037 
(0.004) 

0.954 
(0.005) 

5.68E-05 
(5.80E-05) 

16208.2 
10.115 
[0.018] 

BBB 
3.294 

(3.339) 
16.838 

(19.396) 
-10.956 
(0.056) 

-143.675 
(27.884) 

0.039 
(0.004) 

0.943 
(0.006) 

6.62E-05 
(5.89E-05) 

16259.5 
9.226 

[0.026] 

BB 
3.860 

(0.774) 
17.406 
(3.549) 

-10.712 
(0.016) 

-427.939 
(9.938) 

0.056 
(0.002) 

0.875 
(0.005) 

5.57E-05 
(5.50E-05) 

16164.1 
405.082 
[0.000] 

B 
79.306 

(6.6E+04) 
1210.812 
(1.0E+06) 

-10.058 
(0.046) 

-440.573 
(9.266) 

0.101 
(0.002) 

0.868 
(0.003) 

1.32E-04 
(4.90E-05) 

15587.6 
139.312 
[0.000] 

CCC 
4.565 

(1.771) 
17.551 
(7.874) 

-11.553 
(0.149) 

-219.318 
(35.312) 

0.023 
(0.001) 

0.973 
(0.000) 

-1.1E-05 
(8.58E-05) 

12479.3 
15.348 
[0.002] 

See notes in Table 4.a. 
 
 
 
 
Table 4.h. Estimates of the GARCH-MIDAS volatility specification with VIX 
 

 1ω  2ω  m  θ  α  β  µ  LogLike. L. Ratio 

AAA 
0.140 

(0.678) 
3.131 

(3.986) 
-12.190 
(0.186) 

53.621 
(8.005) 

0.053 
(0.005) 

0.918 
(0.009) 

6.40E-05 
(5.97E-05) 

16162.4 
23.028 
[0.000] 

AA 
-0.527 
(0.601) 

0.228 
(1.211) 

-11.752 
(0.280) 

36.056 
(11.891) 

0.025 
(0.002) 

0.969 
(0.002) 

-1.09E-05 
(5.88E-05) 

16163.9 
8.028 

[0.045] 

A 
-1.031 
(0.832) 

-0.169 
(1.424) 

-11.850 
(0.252) 

37.094 
(10.843) 

0.035 
(0.004) 

0.952 
(0.005) 

6.72E-05 
(5.86E-05) 

16209.7 
12.959 
[0.005] 

BBB 
-1.123 
(1.031) 

-0.174 
(1.835) 

-11.739 
(0.197) 

31.200 
(8.776) 

0.037 
(0.004) 

0.945 
(0.005) 

6.60E-05 
(5.95E-05) 

16260.0 
10.329 
[0.016] 

BB 
-35.925 

(1.1E+11) 
45.053 

(1.4E+12) 
-12.431 
(0.050) 

68.832 
(2.258) 

0.047 
(0.002) 

0.876 
(0.004) 

2.82E-05 
(6.86E-05) 

16037.3 
151.507 
[0.000] 

B 
-37.647 

(5.5E+03) 
-37.302 

(5.5E+03) 
-12.159 
(0.121) 

86.562 
(4.566) 

0.064 
(0.001) 

0.924 
(0.001) 

1.28E-04 
(5.44E-05) 

15558.6 
81.377 
[0.000] 

CCC 
5.968 

(2.082) 
89.374 

(30.191) 
-11.157 
(0.062) 

88.364 
(2.360) 

0.010 
(0.000) 

0.987 
(0.000) 

-1.7E-04 
(1.31E-04) 

12520.1 
97.088 
[0.000] 

See notes in Table 4.a. 
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Table 4.i. Estimates of the GARCH-MIDAS volatility specification with Illiquidity 
 

 1ω  2ω  m  θ  α  β  µ  LogLike. L. Ratio 

AAA 
5.631 

(5.420) 
2.644 

(2.393) 
-11.354 
(0.137) 

98.853 
(29.236) 

0.048 
(0.004) 

0.940 
(0.005) 

6.78E-06 
(5.96E-05) 

16154.4 
7.041 

[0.071] 

AA 
3.828 

(2.145) 
53.446 

(40.642) 
-11.020 
(0.140) 

26.463 
(14.203) 

0.028 
(0.003) 

0.968 
(0.003) 

5.68E-05 
(5.92E-05) 

16162.9 
6.030 

[0.110] 

A 
0.087 

(0.729) 
0.719 

(1.767) 
-11.097 
(0.177) 

29.689 
(34.467) 

0.036 
(0.003) 

0.957 
(0.004) 

3.15E-05 
(5.80E-05) 

16204.2 
1.968 

[0.579] 

BBB 
-0.618 

(73.949) 
41.198 

(2.4E+03) 
-11.026 
(0.084) 

5.486 
(9.336) 

0.037 
(0.003) 

0.952 
(0.004) 

6.97E-05 
(5.88E-05) 

16255.7 
1.756 

[0.625] 

BB 
1.801 

(0.123) 
1.187 

(0.071) 
-12.652 
(0.061) 

426.982 
(11.003) 

0.064 
(0.002) 

0.911 
(0.003) 

4.92E-05 
(5.05E-05) 

16279.9 
636.622 
[0.000] 

B 
17.971 
(1.851) 

12.020 
(1.255) 

-11.193 
(0.072) 

250.049 
(5.850) 

0.197 
(0.006) 

0.759 
(0.006) 

-1.2E-04 
(3.74E-05) 

15656.0 
275.998 
[0.000] 

CCC 
1.425 

(0.050) 
1.996 

(0.060) 
-11.141 
(0.076) 

566.111 
(10.287) 

0.027 
(0.001) 

0.969 
(0.000) 

-8.8E-06 
(1.02E-04) 

12540.1 
136.916 
[0.000] 

See notes in Table 4.a. 
 
 
 
 
 
Table 4.j. Estimates of the GARCH-MIDAS volatility specification with Volatility of 
Consumption Growth 
 

 1ω  2ω  m  θ  α  β  µ  LogLike. L. Ratio 

AAA 
103.336 
(53.592) 

117.734 
(61.975) 

-11.149 
(0.111) 

450.535 
(148.761) 

0.046 
(0.004) 

0.943 
(0.005) 

6.44E-05 
(5.98E-05) 

16155.2 
8.684 

[0.034] 

AA 
138.644 

(105.746) 
152.642 

(118.560) 
-10.996 
(0.121) 

220.313 
(120.811) 

0.030 
(0.002) 

0.966 
(0.002) 

5.95E-05 
(5.86E-05) 

16161.8 
3.962 

[0.266] 

A 
7.027 

(6.511) 
10.938 

(10.812) 
-11.290 
(0.163) 

649.549 
(309.401) 

0.038 
(0.003) 

0.953 
(0.004) 

5.98E-05 
(5.82E-05) 

16204.6 
2.928 

[0.403] 

BBB 
381.637 
(0.401) 

788.044 
(0.695) 

-11.130 
(0.071) 

205.150 
(37.657) 

0.038 
(0.003) 

0.949 
(0.004) 

7.54E-05 
(5.84E-05) 

16262.2 
14.778 
[0.002] 

BB 
653.936 
(0.170) 

440.987 
(0.148) 

-11.252 
(0.036) 

799.844 
(9.050) 

0.065 
(0.002) 

0.907 
(0.003) 

1.45E-04 
(4.88E-05) 

16265.0 
606.851 
[0.000] 

B 
5.290 

(0.266) 
10.127 
(0.552) 

-11.630 
(0.071) 

3214.928 
(54.792) 

0.190 
(0.006) 

0.767 
(0.006) 

9.57E-05 
(4.30E-05) 

15658.5 
281.134 
[0.000] 

CCC 
228.737 
(29.573) 

167.646 
(21.335) 

-12.408 
(0.147) 

738.075 
(46.869) 

0.029 
(0.001) 

0.968 
(0.000) 

8.41E-04 
(7.48E-05) 

12521.8 
100.449 
[0.000] 

See notes in Table 4.a. 
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Table 4.k. Estimates of the GARCH-MIDAS volatility specification with Volatility of 
Stockholders Consumption Growth 
 

 1ω  2ω  m  θ  α  β  µ  LogLike. L. Ratio 

AAA 
3.187 

(0.901) 
38.532 

(13.578) 
-11.283 
(0.086) 

30.547 
(5.323) 

0.050 
(0.005) 

0.931 
(0.007) 

6.62E-05 
(6.02E-05) 

16159.1 
16.597 
[0.001] 

AA 
6.806 

(3.096) 
108.735 
(57.863) 

-11.058 
(0.130) 

13.104 
(4.206) 

0.027 
(0.003) 

0.969 
(0.003) 

5.77E-05 
(5.88E-05) 

16166.7 
13.709 
[0.003] 

A 
15.069 

(17.034) 
116.531 

(144.014) 
-11.071 
(0.112) 

7.618 
(3.718) 

0.036 
(0.003) 

0.956 
(0.004) 

5.67E-05 
(5.83E-05) 

16206.3 
6.242 

[0.100] 

BBB 
87.091 

(144.414) 
5.885 

(9.441) 
-11.079 
(0.085) 

7.951 
(2.937) 

0.036 
(0.003) 

0.955 
(0.004) 

6.89E-05 
(5.86E-05) 

16258.7 
7.781 

[0.051] 

BB 
180.185 
(18.332) 

365.396 
(38.813) 

-11.217 
(0.030) 

33.664 
(1.369) 

0.055 
(0.002) 

0.909 
(0.003) 

1.05E-04 
(5.18E-05) 

16136.0 
348.835 
[0.000] 

B 
-3.098 
(7.622) 

-3.315 
(7.583) 

-10.033 
(0.101) 

-4.642 
(3.289) 

0.060 
(0.001) 

0.935 
(0.001) 

1.51E-04 
(4.59E-05) 

15518.9 
1.876 

[0.599] 

CCC 
-1.949 
(2.040) 

-2.256 
(2.006) 

-12.013 
(0.144) 

7.518 
(3.450) 

0.024 
(0.001) 

0.971 
(0.000) 

-6.7E-06 
(8.40E-05) 

12471.6 
0.002 

[1.000] 
See notes in Table 4.a. 
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Table 5. The behavior of the difference between the MIDAS-GARCH model with a 
given state variable indicator and the standard GARCH model for corporate bond return 
volatilities during expansions and recessions 
 

 AAA CCC 
Macroeconomic 
or Financial 
Indicators 

α  
(Recession) 

β  

(Normal vs. 
Recession) 

α  
(Recession) 

β  

(Normal vs. 
Recession) 

Default 
-0.00672 

(< 0.00001) 
0.00513 

(< 0.00001) 
0.00097 

(0.65904) 
-0.00011 
(0.96235) 

Term 
-0.00021 
(0.83790) 

0.00022 
(0.83851) 

-0.02321 
(0.01733) 

0.01817 
(0.06443) 

IPI 
0.00142 

(0.06321) 
0.00811 

(< 0.00001) 
-0.00526 
(0.01718) 

0.00293 
(0.23032) 

Inflation 
0.00151 

(0.08112) 
0.00745 

(< 0.00001) 
-0.01105 

(< 0.00001) 
0.00682 

(0.00008) 

Consumption 
0.00229 

(0.00276) 
0.00745 

(< 0.00001) 
-0.00139 
(0.56044) 

-0.00364 
(0.13688) 

Stockholder 
Consumption 

0.00161 
(0.05681) 

0.00721 
(< 0.00001) 

-0.00252 
(0.37261) 

-0.00025 
(0.93246) 

Employment 
0.00245 

(0.00233) 
0.00778 

(< 0.00001) 
-0.00116 
(0.63025) 

-0.00317 
(0.20950) 

VIX 
-0.00629 

(< 0.00001) 
0.00431 

(< 0.00001) 
-0.02064 

(< 0.00001) 
0.01921 

(< 0.00001) 

Illiquidity 
0.00038 

(0.75790) 
0.01371 

(< 0.00001) 
0.11951 

(< 0.00001) 
-0.09320 
(0.00016) 

Consumption 
Volatility 

0.00278 
(0.00126) 

0.00748 
(< 0.00001) 

-0.01062 
(< 0.00001) 

0.00461 
(0.00517) 

Stock. Con. 
Volatility 

-0.00062 
(0.40164) 

0.00554 
(< 0.00001) 

-0.02723 
(< 0.00001) 

0.02444 
(0.00013) 

OLS regression coefficients with HAC standard errors and p-values in parentheses from the following 
regression, 

                                       tt
Cnt
t

GM
t uEXPANSIONˆˆ +×+=− βασσ  ,           

where GM
tσ̂  is the volatility generated by the GARCH-MIDAS model with the long-run component 

changing with the state variable indicated in the first column, Cnt
tσ̂ is the volatility implied by the model 

with constant long-run component, and EXPANSION is a dummy variable that takes the value of 1 
whenever the month t does not belong to the NBER official recession dates, and zero otherwise.  
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Table 6. Out-of-sample forecasting ability comparison between the MIDAS-GARCH 
model and the model with constant long-run component for corporate bond return 
volatility 

PANEL A: AAA 

 Default Term IPI Inflation Consumption 
Stockholder 
Consumption 

F -92.35 53.08 -613.93 -67.27 629.74 -483.67 

F (100) -127.36 140.72 -568.02 33.70 493.26 -429.84 
F>0 16% 92% 0% 68% 97% 3% 

 Employment VIX Illiquidity 
Consumption 

Volatility 
Stock. Cons. 

Volatility 
 

F -217.29 566.65 -369.97 -248.18 -490.96  

F (100) -8.16 531.21 -345.75 -71.26 -524.83  
F>0 49% 94% 0% 31% 0%  

PANEL B: CCC 

 Default Term IPI Inflation Consumption 
Stockholder 
Consumption 

F 934.29 33.12 779.86 -416.12 234.90 753.66 

F (100) 825.03 81.09 544.47 -566.65 85.18 449.79 
F>0 100% 89% 99% 0% 76% 93% 

 Employment VIX Illiquidity 
Consumption 

Volatility 
Stock. Cons. 

Volatility 
 

F 829.95 983.91 613.41 829.89 1270.80  

F (100) 609.39 832.94 -145.84 718.03 990.17  
F>0 100% 100% 48% 100% 100%  

The estimation period employs daily information between January 1997 and August 2004, and the 
forecasting period includes all days between September 2004 and January 2012. The statistic for the 
comparison is: 

( ) 1 2
2

2

21
MSE MSE

F T
MSE

−
= − , 

where MSE1 and MSE2  refer to the mean squared forecasting error for the model with constant long-run 
component in volatility, and for the GARCH-MIDAS model with the long-run component determined by 
the indicated state variable, respectively. Rows denoted by F provide the value of the statistic obtained 
with one simulated series for the shock. Rows denoted by F (100) provide the mean value of the 100 
statistics from 100 simulated series for the shock.  F> 0 indicates the number of cases with positive value.           
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Figure 1. Annualized corporate bond yields by credit rating 
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Figure 2. Annual consumption, stockholder consumption, and employment growth rates 
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Figure 3. Annualized conditional volatilities for representative corporate bonds  
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Figure 4.a Simple autocorrelation functions of squared AAA corporate bond returns 
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Figure 4.b Simple autocorrelation functions of squared CCC corporate bond returns 
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Figure 5. Dynamic conditional correlations between pairs of corporate bond returns 
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Figure 6.a. Slope parameter estimates of the long-run component (θ) with state variable 
indicating bad news  
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Figure 6.b. Slope parameter estimates of the long-run component (θ) with state variable 

indicating good news  
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Figure 7.a. Differences in volatilities generated by the GARCH-MIDAS model with 
state indicator and the constant long-run component volatility model. AAA rated bonds. 
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Figure 7.b. Differences in volatilities generated by the GARCH-MIDAS model with 
state indicator and the constant long-run component volatility model. CCC rated bonds. 
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Figure 8.a. Differences in volatilities generated by the GARCH-MIDAS model with a 
financial indicator and the constant long-run component volatility model. AAA rated 

bonds. 
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Figure 8.b. Differences in volatilities generated by the GARCH-MIDAS model with a 
financial indicator and the constant long-run component volatility model. CCC rated 

bonds. 
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Figure 9.a. Out-of-sample MSE for the Constant Long Term Component Volatility and 

the GARCH-MIDAS Volatility with Selected Indicators. AAA rated bonds.  
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Figure 9.b. Out-of-sample MSE for the Constant Long Term Component Volatility and 

the GARCH-MIDAS Volatility with Selected Indicators. CCC rated bonds.  
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