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Abstract
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1. Introduction

Volatility is the key variable in investment anabys security pricing, and risk
management. It is also the most important vari@bleption pricing, and it is heavily
used in the regulation of financial institutionsths key input to estimate for example,
value-at-risk (VaR) measures. Hence, it is not sing that volatility forecasting and
the analysis of the determinants of volatility hdoezome fundamental research issues
in financial economics. As opposed to most of thepieical literature, which has
focused on the behavior of stock market volatiktyg analyze the macroeconomic and
financial determinants of corporate bond returmatilies. We use the multiplicative
two-component GARCH-MIDAS model of volatility redin proposed by Engle,
Ghyselsm and Sohn (2013) and we allow for diffestaracteristics of volatility across
six credit rating categories.

Although the typical persistence in stock marketattity is captured by the
popular ARCH/GARCH-type models of Engle (1982) aBdllerslev (1986), the
dynamics of volatility seems to be better charaoter by the component model
introduced by Engle and Lee (1999). Their proposahsists of two additive
GARCH(1,1) components, one interpreted as a shrbr transitory component, and a
second one identified as the long-run or trend ammept of volatility’ Recently,
however, Engle and Rangel (2008) suggest a muaidiiie component structure, the
Spline-GARCH model, to accommodate non-stationdagtures that are captured by
the long run volatility component. Volatility isehefore a product of a slowly changing,
low-frequency deterministic component picking up tion-stationary characteristic of
the process, and a short-run/high frequency patriieed by a GARCH(1,1) process

which means-reverts to one. The deterministic camepbis supposed to be a function

! Other relevant papers related to this approactCaeenov, Gallart, Ghysels, and Tauchen (2003), and
Adrian and Rosenberg (2008). See Wang and Ghy2@ld ) for a review from a statistical perspective.
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of macroeconomic variables, and hence volatilitglseup being a combination of
macroeconomic effects and time series dynamicsleEagd Rangel (2008) apply this
model to stock market volatilities across 50 caestand conclude that high volatility is
explained by high inflation, slow output growthghivolatility of short-term interest
rates, high volatility of production growth, andyhiinflation volatility.

On top of this, econometric methods involving daampled at different
frequencies have been shown to be useful for feteavolatility in equity assets as
well as to explain the relationship between coodai variance and expected market
returns, especially in comparison with the evideacailable from the GARCH family.
The mixed frequency approach to modeling and ptiedicsolatility known as mixed
data sampling (MIDAS hereafter) was introduced isesies of papers by Ghysels,
Santa-Clara, and Valkanov (2003, 2005, 2006). Tiecess of MIDAS lies in the
additional statistical power that mixed data fregpe regressions incorporate from
using daily data in estimating conditional variasic addition, MIDAS allows for a
very flexible functional form for the weights to la@plied to past squared returns to
explain current volatility’.

The insight of the MIDAS specification when comioigi different frequencies
motivates Engle, Ghysels, and Sohn (2013) to mathéydynamics of low-frequency
volatility methodology employed by Engle and Rang2008) under the Spline-
GARCH model. They suggest interpreting the longdowmfrequency volatility
component in the spirit of MIDAS so that macroeaono data, sampled at lower

frequency, can directly be employed while maintagnihe mean reverting unit GARCH

2 Gonzélez, Nave, and Rubio (2012) also show trevasice of the weighting schemes of MIDAS when
estimating conditional covariances as the crosdymts of portfolio returns and aggregate factonrret
in the cross-sectional estimation of the markes piemium.



dynamics for the short-run component. This newsclalsmodels is called GARCH-
MIDAS.

Contrary to the huge number of papers dealing wititck market volatilities,
relatively little work has been done to understandporate bond volatility dynamics.
This is surprising. It may have been overlookedahse of a possible similarity with
equity or currency volatilities or it may have beeonsidered not to be useful in
practice.A more likely reason may have been related to #uok lof high-frequency
transaction data on corporate boAdé/e think that the study of corporate bonds
volatility is important for several reasons. Fiistshould facilitate a more rigorous risk
management of corporate bond portfolios or podfolihat combine both equities and
corporate bonds as a way of diversifying risks.d8dg it may clarify capital structure
decisions and, in particular, the market timingisieas of issuing new debt or new
equity, as well as the speed of adjustment towaadget leverage. Third, it is a
necessary first step to analyze the correlatiowden stock and corporate bond returns
at individual level. Finally, it complements theeat and prolific empirical analysis on
liquidity.

This paper fills this gap by analyzing the macroegoic and financial
determinants of the volatility of corporate bonduras across six credit rating
categories by applying the GARCH-MIDAS specificatid his methodology allows us
to disentangle the impact of macroeconomic conastion corporate bond volatility
from the short-run dynamics. To the best of ounidedge this is the first paper directly
analyzing this issue.

We find that, for most financial or macroeconomigicators, the in-sample

recognition of a low frequency component of voigtilin corporate bond returns

% A similar pattern has been observed with respediquidity of corporate bonds. Using the recently
available TRACE data Bao, Pang, and Wang (2011llyaes both the time-series and cross-sectional
behavior of corporate bond liquidity.
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significantly improves the likelihood of the GARGHpecification, relative to a constant
long-term component, with independence of the tresting category. In particular,
high volatility is explained by high levels of defapremium, VIX, and equity market-
wide illiquidity. Similarly, high volatility of coporate bonds is related to slow growth
of industrial production, consumption, and emplogiehigh inflation and high
volatility of consumption growth. Not surprisinglwe also get evidence that volatility
sensitivities to changes in financial or macroecoitandicators are often monotonic in
the rating of corporate bonds. For instance, higéels of default premium, VIX,
market-wide illiquidity, and inflation have a mubigher impact on CCC than in AAA
bonds.

Finally, the out-of-sample analysis confirms thievance of the GARCH-MIDAS
model relative to the constantrolatility specification when explaining corpordiend
volatilities. In particular, it is interesting toote the significant impact of aggregate
macroeconomic and financial risks on CCC corporateds for out-of-sample
forecasting.

This paper is organized as follows. Section 2 glesia summary of findings from
related papers. Section 3 describes the data eetlmythe analysis, and Section 4
presents preliminary evidence on corporate bondrnstvolatility. Section 5 briefly
describes the new class of multiplicative comporantels for asset volatility, and
section 6 reports and discusses our in-sample galpiresults on the relationship
between corporate bond volatility and macroeconamnit financial indicators. Section
7 further motivates the results analyzing the barawf the model during
normal/expansion and recession periods, and Se&iguesents the out-of-sample

results. Section 9 concludes.



2. Related Literature on Corporate Bond Volatilities
Regarding the relation between macroeconomic comdit and the behavior of
corporate bonds, one of the most demanding is®fessrto the credit spread puzzle.
Huang and Huang (2003) show that structural defengltiels generate credit spreads
much lower than the historical differences betw@aa and Baa corporate bonds. The
two papers putting forward a potential solutiontlos puzzle consider the effects of
macroeconomic conditions on corporate bond vyieldeen, Collin-Dufresne, and
Goldstein (2009) use the Campbell and Cochrane9)18®del with habit preferences
to show that time-varying risk aversion, togethéhva capital structure mechanism to
match the countercyclical nature of defaults, caroant for the high corporate bond
spreads. In their model, investors are sensitiibeédiming of defaults since high yield
bond defaults are more likely to occur in recessiavhen risk aversion is particularly
high. Rather than modeling risk aversion, Chen QQO0®mploys time-varying
consumption risk in the spirit of the long-run mbadé Bansal and Yaron (2004) to
show that heteroskedastic long—run aggregate cautsamrisk makes firms default
more likely in recessions and generates a moregtisg environment for both stock
and bond holders. Given the response of firms toroggonomic conditions, Chen’s
model endogenously incorporates countercyclicattdiations in risk prices, default
probabilities, and default losses. This simultaseoa-movement generates the large
credit spreads that explain not only the credieagrpuzzle but also the low-leverage
ratios historically reported by firms.

Therefore, macroeconomic conditions have been teserplain the level of credit
spreads over time. However, none of these papedsessl the issue of how
macroeconomic conditions affect corporate bondsatiiy. Similarly, Rachwalski

(2011) shows that corporate bond returns predieswmption growth and labor income



growth even after controlling for equity returnsdditionally, the covariance between
corporate bonds and stock returns predicts theé st@rket index. But, as the previous
authors, Rachwalski (2011) does not discuss tregiosakhip between corporate bond
volatility and macroeconomic conditions.

Finally, there are other papers analyzing the esessional variation of corporate
bond returns. Fama and French (1993) first shotvdtault and term premia are priced
factors in the corporate bond market. Gebhardtdijaer, and Swaminathan (2005)
show that default betas are significantly relatedttie cross-sectional variation of
average bond returns. Furthermore, yield-to-maturégmains the only significant
characteristic after controlling for default andnebetas, suggesting that systematic risk
factors are important for pricing corporate boride, Wang, and Wu (2011) argue that
market-wide liquidity risk is also a priced factarthe cross-section of corporate bonds
as implied by their finding of a positive and siiggant relation between average bond
returns and liquidity beta which is robust to irdithg default and term betas. Acharya,
Amihud, and Bharath (2013) also show that time-wvayyiquidity risk matters for
corporate bonds, suggesting a flight-to-liquidigpeact in the corporate bond market on
top of the well-known flight-to-quality. Moreoveras pointed out above, using
transaction-level data from 2003 to 2009, Bao, Pand Wang (2011) find that market-
wide liquidity explains a substantial variationavédit yield spreads, and that illiquidity
is also priced in the cross-section of corporatadbceturns. Once again, a liquidity
factor is used to explain the time series behavigiield spreads but not the volatility of
corporate bonds.

The work more closely related in spirit to our @®h is Cai and Jiang (2008)
who show that, during the 1996-2005 period, corf@gobmnd excess return volatility is

directly related to contemporaneous bond excessn®t They also argue that bond



volatility is a significant predictor of the threeenth and six-month future corporate
bond excess returns. More importantly, they dec@apyggregate bond volatility into
market, time-to-maturity, and rating componentsfind that corporate bond volatility
has both a slow-moving and a high-frequency compbné&hey identify the low-
frequency component with the trend displayed by rdieng volatility that shows a
positive trend until 2002, followed by a declinipgttern until 2005. However, they do
not statistically decompose both components andy tde not investigate the
macroeconomic sources of the slow-moving patterrvalétilities. Moreover, their
analysis is performed at the aggregate level ratam investigating the behavior of

corporate bond volatilities throughout credit rggn

3. The Data
Our corporate bond volatility study covers the pérfrom January 1997 to January
2012. Dalily yields on corporate bonds come fromfilles of Bank of America / Merrill
Lynch for six credit bond rating classes: AAA, AA, BBB, BB, and CCC or below.
Figure 1 displays the yields for the last day atheenonth for all credit ratings. Their
evolution over time reflects a relatively parallethavior, with the expected peaks
during financial crises, especially for corporatstls rated as BB or lower. Yields of
CCC corporate bonds tend to be much higher thantfaer ratings, with an impressive
overall high of almost 40% during November 2008.

Our objective is to understand the behavior of omafe bond volatilities, which
implies that we are specifically concerned withgeatage changes in corporate bond
prices. Given that we need daily corporate bondrmst in order to estimate the

multiplicative GARCH-MIDAS model, and that transact prices are only available

* Hereafter we call “CCC” when referring to the “C@6d below” rating class.



from 2002 onwards, we approximate the variatioprioes from the variation in yields

Iog{ F’;j 0 |og[%} = Iog{[%j] , 1)

where B, is the price of a corporate bond at titney, is the yield,N is the nominal

as follows,

value of the bond, ariflis the time to maturit.

Panel A of Table 1 displays descriptive statistarscorporate bond yields in our
sample. High yield bonds present very high standardations, positive skewness and
excess kurtosis relative to high-rated bonds. Aalditlly, correlation coefficients are
high for similar rating classes, and they decre@sen we consider the return on bond
classes with very different rating. The correlatmetween AAA and CCC bond returns
is as low as 0.35.

Similarly, Panel B of Table 1 contains informatioegarding corporate bond
returns. Average returns present a decreasingrpattee to the effect of ignoring
coupon payments. However, mean values are notamidar our study. What is really
important is the dispersion in return volatiliti@he annualized volatility of CCC bonds
is 37.9%, relative to a volatility of 7.6% for AABonds. It must be taken into account
that the variability in yields is fully translatéd the variability in prices if the bond has
fixed coupon. Indeed, the maximum and minimum ahpe@ returns correspond to
CCC bonds. In terms of returns, the BBB and BB gaties have the highest negative
skewness and excess kurtosis, and CCC bonds haeenegative skewness and higher
excess kurtosis than AAA bonds. The correlationtgpas are very similar to the
correlations reported for yields. The lowest catiehs among all corporate bonds are

those between the returns of the AAA/AA categoaed the returns of B/CCC bonds.

®> We use the average time-to-maturity of the corgobmnds available in TRACE which is equal to 7.8
years.



Yields-to-maturity for the 3-month Treasury bilhet 10-year government bond
and Moody's Baa corporate bond series are obtainech the Federal Reserve
Statistical Releases. We then compute two statehlas based on these interest rates: a
term structure slopeTérm), computed as the difference between the 10-year
government bond and the Treasury bill rate, andfault premium Defaul, calculated
as the difference between Moody’'s yield on Baa aate bonds and the 10-year
government bond yield.

We collect from National Accounts four alternatigeoxies for macroeconomic
growth as well as the price deflator. Monthly d&dathe industrial production index
(IPI) are downloaded from the Federal Reserve, witiesadentifier G17/IP Major
Industry Groups. Seasonally adjusted consumptigremditures and price indexes on
nondurable goods and services come from Nationadnie and Product Accounts
(NIPA) Tables 2.8.5 and 2.8.4, respectively, avddaat the Bureau of Economic
Analysis. Population data are from NIPA’'s Table.ZItis information is used to
construct real per capita consumption expenditoresondurable goods and services
and the corresponding inflation rate. Additionallye also employ aggregate per capita
stockholder consumption growth rate computed ddafioy, Moskowitz, and Vissing-
Jorgensen (2011). Exploiting micro-level househotchsumption data, these authors
show that long-run stockholder consumption risklaxs the cross-sectional variation
in average stock returns better than the aggregatsumption risk obtained from
nondurable goods and services. On top of that, tepprt plausible risk aversion
estimates. They employ data from the CEX for theiopgefrom March 1982 to
November 2004 to extract consumption growth ratessfockholders, the wealthiest
third of stockholders, and non-stockholders. Ineortb extend their available time

period, they construct factor-mimicking portfolidsy projecting the stockholder
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consumption growth rate on a set of instrumentd, @se the estimated coefficients to
generate a longer time series of instrumented btddkr consumption growth. We
employ these reported estimated coefficients fonegsing a factor-mimicking
portfolio with the same set of instruments for &twader consumption during our
sample period. The last macroeconomic indicatdhésnon-farm employment growth
rate which comes from the Bureau of Labor Stassti8” tables of the seasonal
adjusted employment situation release.

Figure 2 displays aggregate per capita consumpgtockholder consumption, and
employment annual growth rates from 1960 to 201e Time series behaviour of
aggregate consumption and employment growth rategny similar, being smoother
than the growth rate of stockholder consumptionweleer, the troughs and peaks of the
three series tend to have the same time locationth® other hand, as expected, these
peaks are much more pronounced for stockholderucopson growth than for either
aggregate consumption or employment growth.

Daily data onVIX is obtained from the Chicago Board Options Excleang
(CBOE) and the last day of each month is useddatera final monthly option-implied
volatility series.

We use the Pastor and Stambaugh (2003) measurargktawide illiquidity,
which reflects the amount in which stock returnsorend upon high volume. Their
measure is based on daily regressions of indivigieak excess returns over the market

return in a calendar month,

R,-e,?ll =a+bRj; + g[sign(Ri{")J DVol; +€j41 (2

WhereR]?”t']r1 denotes the excess return of stgpaver the market return. Pastor and

Stambaugh aggregate the estimates ofgtlveefficient across stocks and scale it for
growing dollar volume. They finally propose the awations in this regression as the
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final measure of illiquidity. The intuition is that high volume moves prices gwa
equilibrium and they rebound the following day, ahisuggests thag is typically
negative.

Finally, we also employ two additional indicatocsdapture economic risk: the
volatility of consumption growth and stockholdemsumption growth. Volatilities are
the square of the residuals from a twelve lag aegpessive estimate.

Table 2 contains descriptive statistics for theaficial and macroeconomic
indicators used throughout this research. Annuadlizelatility is relatively high for
industrial production and stockholder consumpticongh, VIX, and especially market-
wide illiquidity. VIX is highly and positively coglated with the default premium and
negatively correlated with macroeconomic variablesspecially stockholder
consumption growth, and employment growth. In terms monthly growth,
employment presents a higher correlation with itdisproduction and aggregate
consumption than with stockholder consumption, &he default premium has a
negative correlation with industrial production,neamption, and especially with

employment growth.

4. Preliminary Evidence on Conditional Corporate Bonds Volatility
Given the lack of existing studies on corporatedowalatility, and before comparing
the more elaborate GARCH-MIDAS model with the cieaisGARCH, we study some
properties characterizing corporate bond volasitusing the traditional GARCH (1, 1)
specification and the dynamic conditional correat{DCC) framework.

Figure 3 contains the conditional volatility estbehfrom a GARCH (1, 1) model

for three representative credit ratings, i.e., AABB, and CCC corporate bonds. The

® The monthly series are available in Lubos Pasteels site.
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behavior displayed by conditional volatilities showihe expected pattern. The
conditional volatility of CCC (right axis) is notnly systematically above the
conditional volatilities of the other two ratingsut also presents larger peaks during
crisis periods. Thus, estimated conditional valsg are dominated by the huge
increase after October 2008, as a consequenceeofdhman Brothers crisis. The
volatility of CCC bonds rises in the following mbstto 154%, whereas those for AAA
and BBB bonds (left axis) increase to 14% and 3&%pectively. Except for the
different rise during the crisis, there is no sigaint difference between the levels of
volatilities of AAA and BBB bonds. However, it important to note that the volatility
of volatility is higher for BBB bonds relative toA® bonds. Indeed, we know that the
excess kurtosis of BBB is much higher than thedaistof AAA bonds.

The evidence on ARCH structures is clear in allesasom the autocorrelation
functions for monthly squared returns. This evideiscdisplayed in Figures 4.a and 4.b
for AAA and CCC bonds, respectivelyA GARCH (1, 1) seems to capture the
persistence in volatility appropriately, as indexhtby the comparison between
autocorrelation functions of squared returns aaddsrdized squared returns using the
estimated GARCH (1, 1) conditional volatility. Tlhsual statistics to test for possible
specification errors, such as autocorrelation ahdardized squared residuals using the
estimated conditional volatilities or Lagrange nplier tests for ARCH structures, do
not detect any obvious misspecification for anyngatlass.

Given that we are specifically interested on thdormation content of
macroeconomic and financial indicators regardingpeoate bond volatility, we
estimate again the GARCH (1, 1) model adding eileeeconomic or a financial state

variable as an explanatory volatility factor. TaBleeports the results using our set of

" The evidence on the persistence of volatilityvsremore noticeable for daily squared returns,fout
the sake of the argument in this section, we joaty@e monthly returns.
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indicators and corporate bond returns for the twityeene rating categories, namely
AAA and CCC bonds. Once again, the empirical ewigeshows reasonable economic
results. For both AAA and CCC bond returns, higgeswth rates of consumption,
stockholder consumption, and employment reduce thaatility and higher market
equity volatility (VIX), market-wide illiquidity, ad consumption volatility significantly
increases their volatility. Additionally, industriproduction growth is also negatively
related to the volatility of AAA bond returns whikle risk of default significantly
affects the volatility of the bonds returns in thghest risk class.

Finally, Figure 5 displays the estimated dynamicditbonal correlations between
pairs of AAA, BBB, and CCC bond returns, suggestsame differences in their
determinants or in their reactions to shocks imth&he estimated correlation between
AAA and CCC bonds is positive but relatively smalhe low values of this correlation
suggest that while AAA and CCC bond returns tendegpond to a given change in
their common determinants by moving in the samection, its overall impact is
relatively small. The conditional correlation beameBBB and CCC bond returns is
indicative of a more similar reaction to commonedetinants. AAA and BBB bond
returns seem to experience similar reactions, waithigh and positive conditional
correlation over the whole sample. The three caothl correlations experience a sharp
increase in October 2008, reflecting the fact thatincreased risk perception produced
by the fall of Lehman Brothers initially led to awnturn in returns for most assets. The
correlations of both AAA and BBB bond returns wili€C returns initiated a gradual
comeback to their long-run average that still cmndd at the end of our sample.
Interestingly, AAA and BBB returns experience aalgaing process after the October
2008 peak, with their correlation falling well belats long-run average. That might be

a reflection of the fact that over the last fourntis of 2008, CCC and BBB bonds lost
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77% and 19% of their value, respectively, while AAAnds decreased by only 2%. A
simple exercise that assumes an investment of $t@Be beginning of our sample
period shows that, by the end of our sample in dagn@012, CCC bond prices still
were at 30% of their initial value. Gains from istments in AAA and BBB bonds
would have also been lost by the summer of 2008ceSthen, AAA and BBB bonds
yielded a 35% and16% return, respectively, in tired years before the end of the
sample.

The different levels and dynamics of correlationtwsen pairs of bonds in
different risk classes show the different natureéhefir returns and justify a formal and

more rigorous analysis of their volatility.

5. The Multiplicative GARCH-MIDAS Two-Component Model of Volatility

The essence of the MIDAS approach is to consideéa aath different sampling
frequency. In our case, we combine daily datatierreturns of corporate bonds across
different credit ratings with monthly data for thmacroeconomic and financial
indicators.

Let r;; be the return on a bond on diapf montht, and N, is the number of
business days within this month. We assume thdy daturns follow a statistical
structure given by

liy =M+ iy, 3)

where 77;; is an innovation normally distributed with zero aneand conditional

variance aizyt =1,0;;, where g;; is the high-frequency component following a unit
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GARCH(1, 1) process, ang, is the stochastic low-frequency componefthus, the
return can be written as
e = H*T TGt &y 4)(

where ¢; is a shock with distribution N(0,1) given the infaation available up to day

(i-1) of montht.

As in Engle, Ghysels, and Sohn (2013), we assinaiethe volatility dynamics

of the componeny;, is a daily GARCH(1, 1) process given by

9 :(1_0_:3)'*'0 M*’ﬂ O 5)

t

wherea + f<1.
On the other hand, the low-frequency (monthly) ponent 7, is assumed to

respond to economic conditions over a relativelgglgeriod of time where these
conditions are represented by either macroeconomficancial indicators. Thus, in the

spirit of MIDAS regression and filtering, the; component is assumed to be a

smoothed measure of past values of some drivirighlar’

K
logr, =m, + Hlkz% (a’l,n %,z) Xk (6)
=

In our caseX denotes either the level or the variance of a nesmmomic or financial

indicator. In this specification, the low-frequenmymponentog(z, ) varies from month

® Note that in the original two-component model aigél and Rangel (2008) the low frequency
component is deterministic, while in this specifica 7; is stochastic. This is the modification suggested
by Engle, Ghysels and Sohn (2013).

°In the usual MIDAS approach, the low-frequency poment is a smoothed measure of the realized
variance of the asset itself. This can be easiljodtuced in the specification above. However, iis th
research, we will focus on the impact that eithacrmeconomic or financial indicators have on thark
variance of asset returns.
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to month but it stays the same for all days in \&gimonth. This is the GARCH-
MIDAS model with fixed time span indicatdt.
As in Engle, Ghysels, and Sohn (2013), we assumexipectation of the high-

frequency component to be equal to its unconditierpectation £, ,(g;,) =1) at the
beginning of the period. Therefore, the long-rumponent is given by,

Et—ll(ri t - ,U)ZJ = Et—l(gi,t ) =T (7)

Finally, we assume a beta weighting scheme fortemjuéb), given by

(8)

As discussed by Ghysels, Sinko, and Valkanov (20063 beta-specification is very
flexible, being able to accommodate increasingyeBsing or hump-shaped weighting

schemes.

The model can be estimated using log-likelihoothmegues. For each credit rating
and for each financial or macroeconomic indicatmsing either level or volatility
values, we estimate the set of parame®@rs (u,a,5,m,8,a,,c,) by maximizing the

following log-likelihood,

t=1.2,..T | _ & 1 _(rIZ[n_gl.lt)
log L({ ri,t}i=1,2,..,Nr ) - ; — log 2m,g,, © |
9)
1ii oge+ 16 )+1(r"_ﬂ)2
=—— 0}
23 = A% 2 L0

191t can be easily extended to allow for a rollinmelow structure, which we do not pursue in thisgrap
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6. In-Sample Estimates of GARCH-MIDAS Model of Corporate Bond Volatilities
with Financial and Macroeconomic Indicators
Next, we estimate the GARCH-MIDAS model given bypeessions (4), (5), and (6)
where the weights applied to past values of thecatdrs are given by the beta-
weighting scheme in (8). For each credit rating aadh financial or macroeconomic
indicator we maximize the log-likelihood functiorvgn by (9). The number of lags in
the long-run componenk, is different for each corporate bond and indicaaad in all
cases, we employ the lag that maximizes the logthkod function. The estimation
combines the daily return data for corporate bowitt the monthly data for the
financial and macroeconomic indicators.

The empirical results are reported in Table 4.augh Table 4.k, where each table
corresponds to a particular financial or macroeoancstate variable and contains the
results for all credit rating categories. We refbd estimated parameters given by the

set@ = (/,l,a,,B,m,é?,a)l,a)z) with the standard errors in parentheses, the vaiube

log-likelihood function, and the likelihood ratidoained by comparing the estimated
model with the nested benchmark model given bystieification with constant long-
run component. In brackets, below the likelihodtibratatistic, we report itp-value*

In all cases, the& and  parameters of the short-run component given byittie

GARCH process are estimated with precision andemtagasonable and similar values
across all state variable indicators. In generabfbrating classes, the estimated mean
for the short-run dynamics is close to zero, asetqul in daily return data. The average
estimated alpha (beta) for the AAA bond is slightigher (lower) than for the CCC

bond, and the persistence, measured as the surotlofplarameters, is also slightly

1 We recognize that a potentially serious issuettifig the model many times separately is multipjic
The significance of results for some indicatorséme scenarios might just be because of chanca, eve
though they might not be significant. Thereforaeipretation of our results must be made with cewiti

In any case, the out-of-sample exercise we reptat In the paper alleviates this issue.
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higher for the CCC bond. The exception is the Bddiond for default premium, term
premium, illiquidity, and consumption volatilitypf which we estimate a higher alpha
relative to other bonds and indicators.

Estimated weights tend to vary across cases piegetifferent shapes ranging
from monotonically decreasing to hump-shaped wsighnd the lag attaining the
maximum value also varies across ratings and stiable indicators. It is also the
case that the weight parameters tend to be estiméth low precision. Given that we
take logs to estimate the long-run component, teamof the long-run componem,

IS negative by construction and it is estimatedhgitecision in all cases.

We are particularly interested in the slope paramet the long-run component,
@. It indicates whether the past behavior of a fai@nor macroeconomic indicator
anticipates either an increase or a decrease inalaglity of corporate bond returns. It
turns out that, independently of the corporate b@tithg, & is strongly significant for
most indicators. Moreover, the long-run componegfiicient is significant for bonds
in the extreme risk class for all state variablegplyed in estimation. This suggests
that the recognition of the long-run component k&g factor for a better understanding
of the behavior of the volatility of corporate boredurns. Thef estimates tend to have
the expected sign. They are positive when an iser@a the state variable implies a
negative shock for the economy, and negative fosghcases in which an increase
represents a positive shock. Overall, we find timareasing values of the default
premium, VIX, illiquidity, inflation, and consummn volatility anticipate higher future
volatility of corporate bond returns, while increms values of production,
consumption, or employment growth as well as thentpremium, anticipate lower

volatility in corporate bond returns. Moreover,haligh the sign is exactly what we
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expected, the relative impact of the indicator @ kbng run component of the bond
volatility is quite different across credit ratiogtegories.

In order to appreciate this point, Figure 6.A andufe 6.B display theé
estimates for state variable indicators that geaareore and less volatility respectively
across credit rating categories. For a better coisga 6 is divided by its cross-
sectional standard deviation across credit ratidgslyzing bad-news indicators, VIX
seems to be the most relevant factor explainingarate bond returns volatilities for all
credit ratings, although the impact of VIX is espéy large for the BB, B, and CCC
categories. Similarly, the default premium presamsncreasing impact when we move
from AAA to CCC bonds. Together with VIX, they bege the key factors generating
the trend of return volatility for CCC bonds. Conmmation volatility also has a similar,
although smoother, increasing pattern across mtibgt it becomes less relevant for
CCC bonds. On the other hand, stockholder consomptolatility seems to have a
higher impact on the AAA categol¥.Finally, inflation, and market-wide illiquidity
become more important the lower is the credit ratitass™® Hence, in terms of CCC
bonds, VIX, the default premium, inflation, andglidity shocks are the most relevant
indicators of bond return volatility, while VIX anstockholder consumption volatility
dominate the volatility of AAA bonds. On the goodws side, industrial production
growth is practically the most relevant factor eiptating a reduction in corporate bond
volatility for all rating classes. Consumption amunployment growth are also
macroeconomic state variables explaining a long-reiduction in volatility. It is

interesting to point out that these macroeconomécators seem to have more impact

12 This is an intriguing result that deserves moterdion. It may easily be the case that stockholder
consumption is a relevant state variable not oohefjuities but also for corporate bonds as lontheg

are the less risky bonds financing the companies.

31t is well known that inflation is one of the kewriables explaining discount factors for governmen
bonds. Higher expected inflation makes future molesg appealing, so discount rates decrease. This
effect seems to be especially relevant the higierisk of the bond. The effect of inflation riskpands

with the risk of corporate bonds.
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on the BB and B categories than on CCC bonds. thddéw effects of production,
consumption, and employment growth on the volgtiof AAA and CCC are quite
similar, but less than for the BB and B bonds.

Finally, we must test the in-sample overall stetadtsignificance of the model
specification that incorporate a stochastic behatow the long-run component of
volatility relative to the specification in whiche low-frequency component is assumed
to be constant. Hence, the benchmark model is tARTH-MIDAS model with
constant . The last column of Tables 4.a to 4.k provides likelihood ratio test
statistic and the correspondipgvalue. Out of the 77 cases analyzed (11 statalari
indicators by 7 credit rating categories), in 54esthe test indicates a statistically
significant improvement in fitting the data whermanporating the stochastic long-term
volatility component. It also implies that a numbmdr macroeconomic and financial
indicators contain relevant information concernifidure conditional volatility of
corporate bond returns. Moreover, for some of tlestmmelevant indicators, i.e. VIX,
industrial production, and consumption and emplaynggrowth, we always reject the
constant specification. The default premium, inflation, metkvide illiquidity,
stockholders’ consumption growth and aggregate wopson volatility contain
explanatory power on future volatility of bond nets for the lower rating classes (BB
and below). The volatility of stockholder consunoptseems to contain information on

future volatility for high credit rating bonds.

7. Interpreting the Role of Economic Indicatorsin In-Sample Volatility Estimation
Since we have just shown that there is ample egmlesf information content in
macroeconomic and financial indicators on futuredoeturns volatility for all bond

classes, the next step is to try to advance sotnéiam on this evidence. To that end,
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we split the sample between recession and nornpafeston periods to examine the
different behavior of AAA and CCC bond return vdigt in each sub-sample. The
approach we follow is that having shown a generdlgjter likelihood fit for the
GARCH-MIDAS model, we take any significant depaetdrom its implied volatility
relative to the constantvolatility as an improvement in volatility estinna.

Figures 7a and 7.b show the differences betweeatiltyl estimates from the
GARCH-MIDAS approach using macroeconomic indicataad the constant-
approach for the AAA and CCC bonds respectivelygd®ding high credit quality
bonds, and for most of the sample period, the GAROBAS method with
macroeconomic indicators generates higher vohatilitan the constant-approach.
These differences sharply decline over the first bfathe recent recession period. In
fact, from October of 2008 until the official end the crisis, the model specification
without macroeconomic indicators generates highelatiity. It seems that the
recognition of macroeconomic indicators during isrismoothes volatility of AAA
bonds relative to the constamapproach. On the other hand, for CCC bonds, the
difference keeps changing from positive to negatiepending upon the economic
situation. The differences become much larger durecessions, and they become
positive at the end of recessions and the beginoiirexpansions when the volatility of
the GARCH-MIDAS model is higher than the volatiliygnerated under the constant
approach.

Figures 8.a and 8.b contain the differences intilbles for key selected financial
indicators as VIX and default premium. For AAA behdhe GARCH-MIDAS model
seems to generate less volatility for both indicsatduring recession periods, but for

CCC bonds, this is only the case for VIX.
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To examine whether this graphical evidence leadsstagistically significant
conclusions on the comparison between the chaistater of the time series of

volatility estimated from both modeling strategie®, use a simple regression approach:
M — M = 0 + Bx EXPANSION +u , (10)

where &tGM is the volatility generated by the GARCH-MIDAS nub;d&tcmis the

volatility obtained under the constant-specification, andEXPANSIONis a dummy
variable that takes the value of 1 whenever mdntltoes not belong to the NBER
official recession dates, and zero otherwise. Timglies that the intercept is the
average difference between the volatilities gererdty both models over recessions,
while the slopef indicates how the difference in estimated vokssi changes in
normal/expansions times, relative to recessionopgeriThe sunu + g is the average
difference of volatilities over normal/expansiomés.

For both AAA and CCC corporate bonds, Table 5 dostastimates of the
intercept and the slope in each regression, asagelhep-values for the significance
tests, obtained using standard errors robust tgpthsence of heteroskedasticity and
autocorrelation. In the interpretation that follows will focus on coefficients estimated
with ap-value below 0.10.

Coefficient estimates are consistent with our presi comments on the time
behavior of volatility from both types of modelseswecession and expansion times.
For AAA bonds, we obtain a positive intercept folosh of the macroeconomic
indicators, reflecting the observation that the GARMIDAS volatility is, on average,
higher in recession periods than the constamblatility estimate. This is the case
despite the sharp decline of the difference betweeh volatility estimates during the
last part of the recent financial crisis, as re#ecin Figure 7.a. On top of this, the
differences between normal/expansion periods ameésstons are positive, as also
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displayed in Figure 7.a, and statistically sigrfit For key financial indicators, as the
default premium and VIX, the intercept is negatawel significantly different from zero,
meaning that average GARCH-MIDAS volatility is img case lower than the constant-
7 volatility. In normal/expansion times the volagliestimated with the default premium
and VIX is significantly higher than the constantelatility. Hence, during recessions,
and for AAA bonds, decreasing (increasing) valuésmacroeconomic (financial)
indicators make the GARCH-MIDAS generated corpolated volatilities to be higher
(lower) on average than the constantlatility. Relative to macroeconomic indicators,
bad news captured by financial indicators duringessions generate short-term noise
that make the volatility from the pure GARCH spe@fion to be higher than the
volatility from MIDAS-GARCH model. This behavior @isplayed in Figure 8.a for the
default premium and VIX. Similarly, during normalfgmnsion times, increasing
(decreasing) value of macroeconomic (financial) ialdes always increase the
GARCH-MIDAS volatility relative to the constantvolatility. Thus, we may conclude
that the recognition of state variables in the bejreof AAA bonds have a significant
impact both during recessions and normal/exparEoiods.

For CCC bonds, volatility estimates from the GARGHDAS approach are, on
average, lower in recessions than the constaotatility estimate, leading to negative
intercept estimates. Slope estimates have in alksahe opposite sign to the
corresponding intercept, leading to a much lesssistent difference between the
volatility estimates from both modeling approachhesiormal/expansion times across
indicators. Important exceptions are VIX, and thaatility of both measures of
consumption, where the GARCH-MIDAS model generatesre volatility during
normal/expansion times than the constanblatility specification. Hence, our estimates

suggest that the use of indicators to estimatetilittas of interest for AAA bonds in
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any conditions, whereas in the case of CCC bords mostly interesting around

recession periods.

8. Out-of-Sample Predictions of the GARCH-MIDAS Mode with Financial and
M acr oeconomic I ndicator s Relative to the Constant-z Volatility Specification.
The in-sample analysis suggests that the GARCH-M3DAodel with a state variable
in the secular component of volatility helps expiag the behaviour of future volatility
of corporate bonds, and for some indicators thisus independently of the credit rating
category. However, the in-sample analysis andikiedihood ratio test may favour more
complicated models due to over-fitting and largengie size. The out-of-sample
prediction is relevant when comparing models wiitfiecent complexity and it might
help to reinforce the results reported previoudgcause of the high correlations
between some of state variables and also to awmdmarameterization, it should be
noticed that state indicators have been includesl ana time in the low-frequency
component. We now propose an out-of-sample exertseompare the potential
improvement in the forecasting ability of corporbtend volatilities for each indicator.
The out-of-sample test divides the full samplewvito tsubsamples: the estimation
period, withT; days, and the forecasting period, with= T - T; days. In the first
subsample, we estimate the parameters of the cans@ARCH volatility (model 1)
and the GARCH-MIDAS specification for each indigamodel 2). Then, with these
estimated parameters, we generate the bond rataptied by each model for each of
the T, days in the second subsample, and compute thgirsiandard deviation using a
rolling window of 21 past daily returns. This standl deviation will then be compared
with the standard deviation computed from realizedd returns in order to measure the

forecasting errors.
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More specifically, we divide the entire sample two sub-periods with
approximately the same number of observations; éeBmation period employs
information regarding each day between January 189¥ August 2004, and the
forecasting period includes each day between Sdq@ef004 and January 2012. Using
the parameters estimated in the estimation pedand,for each day in the forecasting
period, returns implied by the traditional constantodel (model 1) are obtained as

i-t =m (118)
s _ 7 2
R WL ST - (11b)

fit :i/+mgi,t’ (11c)

where ¢, is a standard Gaussian variable Withrealizations. The series for the return
volatility is computed as

65" = SD(F_py o )12 (11d)

Similarly, returns implied by the GARCH-MIDAS modémodel 2) for each

indicator, and their volatility are obtained as

Iy = m+é§:1¢k(&}1'&)z)xt—k (12a)
A ~\2
Qit = (1‘a‘lé)+a(n_n?—;m+,@i—1,t (12b)
P =+ \T0ic ey (12c)
6" =SD(F 0. )V12, (12d)

where the random shock,, , is the same as in model 1.

The mean squared errdi$E) for each model is defined as
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1 T,-21

|\/|S|_:1 = T o1 z (O}Iieal _0'\.i(im)2 (13a)
2 t
1 Y Real _ aom )2
MSE =—— > (a7 -a5") (13b)
2 t

where g/ = SD( [ ..., 1, )¥12, andr, are realized bond returns.

Finally, theMSEfrom the two models are compared through thessitf

| MSE, ~MSE,

F=(T,-21 14
(T V5 (14)

A positive value for thd= statistic indicates that the volatility mean sepgar
forecasting error is lower for the GARCH-MIDAS spaation with a state indicator
modeling the secular volatility component thantfog constant-GARCH specification.
The same intuitive argument applies for a comparawoss different indicators.

Panels A and B of Table 6 contain the out-of-sanmnesilts for each financial or
macroeconomic indicator for the AAA and CCC corperhaonds, respectively. First
row provides thd= values from expression (14). Starting with AAA bisnonly three
state variables seem to improve the forecastinkifyabif the GARCH-MIDAS model
relative to the constantvolatility specification: The term structure slom®nsumption
growth, and VIX, where the statistic is especidilyge for consumption growth and
VIX. Results for the other state variables indicdteat the standard GARCH
specification produces lower forecasting errormttiee GARCH-MIDAS model. On
the other hand, the results for the CCC rated bardscompletely different. All
indicators, with the exception of inflation, redube forecasting errors with relation to

the constant-model. Now,F values are much higher than for the AAA case, tied

4 See McCraken (2007) for a formal discussion abitatstatistic.
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cases of the default premium, VIX and the volatibf stockholders consumption are
especially remarkabfe.
In order to analyze the dependence of the resultke specific simulated values

for the shocke

.. » we repeat the exercise for 100 different simatwi The second row
in Table 6 provides the mean of the 100 valuesheF statistic, the third row provides
the number of cases in whi€h> 0 within the 100 simulations, and Figures 9.d arb
plot the 100 values for the MSE from model 1 (canst GARCH) and form model 2
with some selected indicators. Results in the sg@m third rows of Table 6 confirm
previous conclusions. In the case of AAA bondsaBd 94 times out of 100, the use of
consumption growth or VIX in the specification bietsecular component of the bond
volatility substantially improves the prediction.okéover, in 92 out of 100 cases the use
of the term structure slope also reduces the M8EQugh the statistic suggests a much
lower improvement relative to VIX or consumptiorogth. For other indicators, such
as IPI or aggregate illiquidity, the more compleARECH-MIDAS specification makes
worse the volatility prediction. These results #liestrated in Figure 9.a. On the other
hand, the volatility of CCC rated bonds is cledbtter predicted by using the default
premium, employment growth, VIX or the volatilityf @wonsumption growth as

indicators for its long-run component. Such langgrovement is illustrated in Figure

9.b.

'3 It must be noted that the loss differences in ession (14) are measured with error. This imples t
the exact distribution of the statistic is also mokn and the asymptotic distribution can only btaoted
under restrictive assumptions that include nonatestodels. For the case of nested models, Clark and
McCracken (2012) suggest deriving the asymptotitridhution by a fixed regressor bootstrap and show
that the test statistic based on the proposal bapthas good size properties and reasonable-Saitgple
power. Unfortunately, the framework in which tRestatistic and the corresponding statistical infieee

are developed by McCraken (2007) and Clark and k& (2012) do not correspond to our framework.
For this reason we do not provide figalues estimated under thestatistic given by (14).
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9. Conclusions

It is surprising how little we know about the tirmeries behaviour of the volatility of
corporate bond returns and about the cross-settdiffarences in volatility across
credit ratings. This paper studies the explangbowyer of macroeconomic and financial
indicators on the volatility of corporate bonds &mven credit rating categories using a
GARCH-MIDAS approach to separate the short-run lang-run sources of corporate
bond volatility. A likelihood ratio in-sample tesuggests that, for most indicators,
recognizing the secular component of volatilitydseéxplaining the behaviour of future
volatility of corporate bonds independently of tloeedit rating category. More
specifically, out of the 77 possible cases analytamioss 11 indicators and 7 credit
ratings), in 54 cases the likelihood ratio test gasgs a statistically significant
improvement in fitting the data when incorporatihg stochastic long-term volatility
component. For VIX, the term structure slope, ardustrial production, consumption,
and employment growth we always reject the constarlatility specification. The
default premium is also a very important financiatlicator but its influence is
particularly concentrated on low-credit rating catees like BB, B, and CCC corporate
bonds.

Paying attention to the extreme rating classesohtain that VIX, the default
premium, inflation, and illiquidity shocks are thwst relevant indicators of bond return
volatility for CCC bonds, while VIX and stockholdeonsumption volatility dominate
the volatility of AAA bonds. On the good-news sidedustrial production growth is
practically the most relevant factor anticipatingeduction in corporate bond volatility

for all rating classes.
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A detailed analysis over the sample period suggeéstisthe use of indicators to
estimate volatility is of interest for AAA bonds amy conditions, whereas in the case of
CCC bonds, it is mostly interesting around recesperiods.

Finally, the out-of-sample analysis shows signsmgdrovement of the GARCH-
MIDAS model relative to the constantvolatility specification. In the case of AAA
bonds this result holds for the term structure sJoponsumption growth, and VIX.
However, the recognition of the long-run componést especially relevant for
forecasting volatility of junk-bonds, where most ar@economic and financial
indicators improve the forecasting ability of theodhel. It is interesting to note the
relevance of aggregate macroeconomic and finansksd when estimating the volatility

of CCC corporate bonds.
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Table 1. Corporate bond characteristics by crediihg

PANEL A: Annualized Yields to Maturity

AAA AA A BBB BB B CCC
Mean 5.01 5.13 5.64 6.38 8.08 10.01 16.33
Volatility 4.70 4.74 4.48 4.45 6.03 8.87 21.15
Skewness -0.25 -0.03 0.15 0.43 1.52 1.25 1.13
Exc. Kurtosis -0.54 -0.99 -0.69 -0.12 3.92 1.94 40.6
Max 7.57 7.84 9.38 10.23 15.99 20.58 38.34
Min 1.97 2.60 3.24 4.17 5.60 6.79 9.13
Correlations AAA AA A BBB BB B CCC
AAA 1 0.97 0.91 0.81 0.49 0.43 0.35
AA 1 0.97 0.87 0.58 0.52 0.39
A 1 0.95 0.73 0.67 0.54
BBB 1 0.89 0.84 0.74
BB 1 0.95 0.87
B 1 0.94

PANEL B: Annualized Corporate Bond Returns

AAA AA A BBB BB B CCC
Mean 2.35 2.08 1.84 1.50 1.25 1.15 0.56
Volatility 7.57 7.04 7.58 7.97 13.50 18.54 37.87
Skewness -0.17 -0.15 -0.56 -2.11 -2.72 -0.94 -0.52
Exc. Kurtosis 5.94 3.15 5.13 15.67 21.48 6.51 8.41
Max 1.23 1.06 1.09 0.81 1.19 2.29 5.38
Min -1.31 -1.02 -1.29 -2.01 -3.68 -3.35 -6.96
Correlations AAA AA A BBB BB B CCC
AAA 1 0.86 0.81 0.63 0.26 0.18 0.18
AA 1 0.97 0.80 0.47 0.37 0.31
A 1 0.88 0.59 0.51 0.44
BBB 1 0.71 0.62 0.53
BB 1 0.81 0.74
B 1 0.82

These statistics are based on daily data from Jgd@®7 to January 2012
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Table 2. Descriptive statistics of macroeconomid famancial indicators

Default Term IPI Inflation Cons. Ségﬂ_(' Employ. VIX llliquidity
Mean 2.53 1.75 1.46 2.59 1.26 2.60 0.60 22.67 -1.81
Volatility 0.87 1.24 2.52 0.83 0.87 3.96 0.64 825 25.14
Skewness 156 -0.07 -172 -123 -023 -0.80 -1.25 1.38 -0.54
Exc. Kurtosis  3.60 -1.33 7.82 9.66 1.61 1.64 2.29 3.27 2.49
Max 6.01 3.70 2575 1460 1148 41.28 494 59.89 344.49
Min 1.45 -0.53 -50.71 -15.25 -9.22 -47.09 -7.33 10.42 -324.42
Correlations  Default Term IPI Inflation Cons. Ségﬂ_(' Employ. VIX llliquidity
Default 1.00 0.51 -0.46 -0.31 -0.37 -0.15 -0.80 10.7 0.16
Term 1.00 -0.03 -0.07 -0.19 0.02 -0.40 0.22 -0.06
IPI 1.00 0.09 0.34 0.03 0.53 -0.22 -0.12
Inflation 1.00 0.04 0.10 0.23 -0.38 -0.02
Consumption 1.00 0.14 0.41 -0.21 -0.10
Stock. Con. 1.00 0.12 -0.44 -0.21
Employment 1.00 -0.50 -0.12
VIX 1.00 0.25

These statistics are based on monthly data fromadgari 997 to January 2012
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Table 3. Estimates of GARCH (1, 1) models withaesindicator

AAA CCC

Indicator Log- Likelihood Indicator Log- Likelihood

Coefficient  Likelihood Ratio Coefficient  Likelihood Ratio
Defaut 00208 470 2318 I OST 5 2882
Term ?fgf)S 449.30 ((;'0287) ?'2922)1 199.20 (oz.ffs)
P E R S R L S S
infaion 0100 weae 42| OB s S
Consumption '(9'29%2)6 452.86 ((1;1633) -(?éfgg)? 203.03 ((1)%(1)2)
Jodoer 009 oo 9% | OO apes 202
Employment -(c_;.;gg)g 456.41 (g'lo'gé) '8';28)5 201.78 ((; '(%36)
O assse g | O em 10
lliquidity ?é?%)? 451.98 ((1).2688) szég)l 204.66 ((1).3688)
Commeien G122 ygops A9 | BN e 112
e T I A

This table provides estimates of the GARCH (1, bdet for AAA and CCC corporate bonds with a
representative macroeconomic or financial varidhificated in column 1 as an additional factbr.
statistics in parentheses for indicator coeffigemind p-values in parentheses for the likelihadi test.
The maximized log-likelihood function for the basase (without the additional factor) is 445.70 and
197.98 for AAA or CCC bonds, respectively. Datanfrdanuary 1997 to January 2012.
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Table 4.a. Estimates of the GARCH-MIDAS volatilggecification with Default

W Wy m 6 a B K LogLike. L. Ratio

AAA 151.244 7059.68 -12.208 48.616 0.049 0.920 7.09E-05 16166.9 32.179
(24.321) (1129.31) (0.121) (4.339) (0.005) (0.009) (5.97E-05) [0.000]

AA 6.960 0.500 -10.127 37.331 0.030 0.965 6.75E-05 16163.0 6.233
(21.756) (2.494) (0.257) (11.992) (0.003) (0.003) (5.89E-05) [0.101]

A -0.731 4374 -11.733 29.320 0.038 0.949 5.43E-05 162057 5.115
(3.284) (48.260) (0.225) (8.759) (0.004) (0.005) (5.83E-05) [0.164]

BBB 4.737 159.494 -11.801 30.273 0.040 0.936 6.5E-05 16259 6 9.594
(17.647) (582.973) (0.134) (4.844) (0.004) (0.007) (5.93E-05) [0.022]

BB -19.664 69.547 -12.941 80.320 0.055 0.856 1.53E-05 16123.5 323.814
(2.7E+10)(8.9E+11) (0.059) (2.178) (0.002) (0.004) (6.16E-05) [0.000]

B -32.653 136.533 -13.272 113.841 0.218 0.656 0.000153 15652 1 268.227
(1.0E+11)(3.2E+12) (0.057) (1.971) (0.008) (0.009) (5.02E-05) [0.000]

cce -2.952 -2.993 -14.871 182.167 0.009 0.981 5.61E-05 125370 130.811
(0.518) (0.516) (0.152) (6.106) (0.000) (0.000) (9.05E-05) [0.000]

This table provides estimates of the GARCH-MIDASdebfor the conditional variance of corporate
bond returns where the long-run component is madagea function of past values of the state vagiabl
indicated in each table (default spread in thigkabhe weighting scheme is the “Beta” function émel
number of lags is optimally determined. Numberpanenthesis are standard errors. Column 9 reguats t
negative of the log-likelihood value at the optimuand the last column provides the likelihood raist
for model comparison, with ifg-value in brackets. Daily data from January 199Jaouary 2012

Table 4.b. Estimates of the GARCH-MIDAS volatilgpecification with Term

Wy W m 6 a B K LogLike. L. Ratio

AAA 2.885 1.220 -10.319 -42.428 0.050 0.926 6.48E-05 16161.25 20.826
(2.133) (0.831) (0.141) (8.186) (0.005) (0.008) (5.9E-05) [0.000]

AA 2.498 1.465 -10.183 -48.494 0.027 0.965 5.70E-05 16169.15 18.590
(1.583) (0.840) (0.159) (9.964) (0.003) (0.003) (5.9E-05) [0.000]

A 2971 1.422 -10.467 -34.468 0.036 0.951 5.78E-05 16208.89 11.424
(2.941) (1.253) (0.179) (10.388) (0.004) (0.005) (5.8E-05) [0.010]

BBB 3.472 1.707 -10.534 -33.022 0.035 0.946 5.89E-05 16262.72 15.757
(2.479) (1.104) (0.105) (5.785) (0.004) (0.006) (5.9E-05) [0.001]

BB 2.030 1.184 -7.656 -189.651 0.046 0.944 4.09E-05 16155.09 387.015
(0.171) (0.104) (0.119) (6.256) (0.001) (0.001) (5.3E-05) [0.000]

B 1.420 0.695 -8.033 -127.939 0.221 0.730 5.36E-05 15614.13 192.342
(0.107) (0.062) (0.090) (2.949) (0.007) (0.006) (4.0E-05) [0.000]

cce 8.075 9.178 -10.545 -99.646 0.020 0.974 2.90E-04 12506.69 70.192
(0.860) (1.018) (0.250) (8.471) (0.001) (0.000) (9.6E-05) [0.000]

See notes in Table 4.a.
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Table 4.c. Estimates of the GARCH-MIDAS volatiligpecification with Industrial

Production Growth

Wy w m 6 a B H LogLike. L. Ratio

AAA 1.528 10.051 -10.836 -102.979 0.048 0.931 7.22E-05 16160.8 20.000
(0.459) (4.115) (0.066) (12.355) (0.005) (0.007) (5.99E-05) [0.000]

AA 0.827 9.763 -10.817 -86.462 0.028 0.965 6.38E-05 16173.9 28.092
(0.480) (7.829) (0.085) (14.236) (0.003) (0.004) (5.88E-05) [0.000]

A 0.309 3.815 -10.891 -71.763 0.034 0.957 5.94E-05 16210.2 14.081
(0.503) (5.796) (0.097) (24.033) (0.004) (0.005) (5.83E-05) [0.003]

BBB 0.507 5.597 -10.939 -76.803 0.034 0.950 6.81E-05 16264.6 19.564
(0.416) (4.687) (0.057) (14.250) (0.004) (0.006) (5.90E-05) [0.000]

BB 3.481 14.862 -10.686 -168.698 0.056 0.882 7.49E-05 16137.0 350.752
(0.419) (2.136) (0.019) (6.042) (0.002) (0.005) (5.47E-05) [0.000]

B 2.751 46.666 -10.033 -182.226 0.110 0.860 1.52E-04 15610.7 185.440
(0.224) (4.796) (0.049) (3.377) (0.002) (0.003) (5.06E-05) [0.000]

cce 1.346 9.650 -11.463 -112.317 0.020 0.974 8.40E-05 12485.0 26.751
(0.197) (2.389) (0.132) (14.285) (0.000) (0.000) (9.43E-05) [0.000]

See notes in Table 4.a.

Table 4.d. Estimates of the GARCH-MIDAS volatilgpecification with Inflation

Wy [79) m 6 a B H LogLike. L. Ratio

AAA 2405.62 74.807 -11.020 46.579 0.045 0.946 6.62E-05 16152.9 4.124
(6.0E+08)(1.9E+07) (0.122) (16.552) (0.004) (0.004) (5.99E-05) [0.248]

AA 1.523 0.189 -11.123 109.891 0.031 0.965 6.79E-05 161613 2.836
(7.273) (1.314) (0.407) (177.790) (0.003) (0.003) (5.85E-05) [0.418]

A 3.074 0.562 -11.037 30.593 0.038 0.955 5.46E-05 16203.2 0.132
(49.415) (5.458) (0.415) (189.946) (0.003) (0.004) (5.81E-05) [0.988]

BBB 5.336 2.287 -11.052 22.009 0.038 0.951 6.75E-05 16254.9 0.078
(60.405) (18.907) (0.337) (150.343) (0.004) (0.004) (5.9E-05) [0.994]

BB 221.575 156.620 -11.325 290.548 0.019 0.978 2.7E-05 16028.0 132.854
(25.231) (17.538) (0.078) (14.373) (0.000) (0.001) (4.66E-05) [0.000]

B 2.071 0973 -7.746 -1106.73 0.065 0.929 7.81E-05 15528.0 20.031
(0.230) (0.097) (0.231) (97.674) (0.001) (0.001) (5.26E-05) [0.000]

cce 2.522 3.734 -15.206 1335.57 0.020 0.974 8.99E-05 12489 8 36.305
(0.238) (0.444) (0.327) (133.735) (0.000) (0.000) (8.89E-05) [0.000]

See notes in Table 4.a.
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Table 4.e. Estimates of the GARCH-MIDAS volatilgpecification with Consumption
Growth

Wy ) m 6 a B H LogLike. L. Ratio

AAA 3.334 12.784 -10.624 -323.751 0.050 0.927 7.30E-05 16162.4 23.032
(1.000) (5.126) (0.069) (33.276) (0.005) (0.007) (5.94E-05) [0.000]

AA 3.389 19.340 -10.659 -278.012 0.028 0.965 5.65E-05 16170.8 21.823
(0.680) (5.607) (0.090) (40.443) (0.003) (0.004) (5.83E-05) [0.000]

A 13.653 97.257 -10.704 -88.126 0.038 0.956 2.37E-05 16207.9 9.534
(6.353) (52.354) (0.161) (35.134) (0.004) (0.004) (5.86E-05) [0.023]

BBB 37.332 298.347 -10.942 -85.152 0.034 0.955 6.58E-05 16264.9 20.026
(86.908) (756.864) (0.070) (25.270) (0.003) (0.004) (5.91E-05) [0.000]

BB 5.424  46.331 -10.478 -403.830 0.038 0.897 7.40E-05 16069 1 214.960
(0.268) (2.700) (0.017) (11.866) (0.002) (0.005) (6.18E-05) [0.000]

B 4377 27.605 -9.756 -375.680 0.070 0.917 1.35E-04 155322 28.395
(0.336) (2.596) (0.066) (20.996) (0.001) (0.002) (4.59E-05) [0.000]

cce 4.807 38.894 -11.353 -292.740 0.020 0.974 -3.2E-05 124911 38.947
(0.221) (2.256) (0.142) (21.177) (0.001) (0.000) (9.34E-05) [0.000]

See notes in Table 4.a.

Table 4.f. Estimates of the GARCH-MIDAS volatiligpecification with Stockholders
Consumption Growth

Wy W m 6 a B K LogLike. L. Ratio

AAA 1.048 2.157 -10.481 -212.898 0.049 0.930 6.53E-05 16162.8 23.993
(0.123) (0.511) (0.093) (31.933) (0.005) (0.007) (5.97E-05) [0.000]

AA 2.258 14954 -10.820 -42.833 0.028 0.967 5.88E-05 16162.7 5.621
(0.951) (10.138) (0.109) (19.735) (0.003) (0.003) (5.89E-05) [0.132]

A 2460 21.100 -10.921 -24.934 0.037 0.955 5.68E-05 16204.4 2.500
(1.749) (22.836) (0.110) (17.434) (0.003) (0.004) (5.82E-05) [0.475]

BBB 0.368 0.076 -10.882 -53.891 0.038 0.951 6.38E-05 16257 7 5.623
(0.521) (0.515) (0.122) (41.171) (0.003) (0.004) (5.88E-05) [0.131]

BB 7.673 7.583 -13.895 303.322 0.022 0.983 2.09E-05 16029 7 136.211
(0.531) (0.474) (0.125) (15.880) (0.001) (0.000) (4.48E-05) [0.000]

B 0.890 1.216 -9.497 -300.036 0.058 0.933 3.12E-04 15535.0 34.058
(0.064) (0.113) (0.090) (26.167) (0.001) (0.001) (5.24E-05) [0.000]

cce 63.987 342.543 -11.977 -42.568 0.026 0.970 3.05E-04 12520.1 97.011
(13.515) (73.070) (0.162) (3.147) (0.001) (0.000) (8.52E-05) [0.000]

See notes in Table 4.a.
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Table 4.g. Estimates of the GARCH-MIDAS volatilispecification with Employment
Growth

wy [ m 6 a B H LogLike. L. Ratio

AAA 4214 21.071 -10.859 -242.109 0.048 0.925 7.17E-05 16163.2 24.696
(2.924) (16.316) (0.054) (25.028) (0.005) (0.008) (6.00E-05) [0.000]

AA 3.347 17.857 -10.813 -181.100 0.030 0.964 6.04E-05 16165.4 11.144
(2.603) (16.963) (0.084) (35.071) (0.003) (0.003) (5.88E-05) [0.011]

A 89.081 339.025 -10.925 -113.308 0.037 0.954 5.68E-05 16208.2 10.115
(66.620) (248.422) (0.091) (36.564) (0.004) (0.005) (5.80E-05) [0.018]

BBB 3.294 16.838 -10.956 -143.675 0.039 0.943 6.62E-05 16259 5 9.226
(3.339) (19.396) (0.056) (27.884) (0.004) (0.006) (5.89E-05) [0.026]

BB 3.860 17.406 -10.712 -427.939 0.056 0.875 5.57E-05 161641 405.082
(0.774) (3.549) (0.016) (9.938) (0.002) (0.005) (5.50E-05) [0.000]

B 79.306 1210.812 -10.058 -440.573 0.101 0.868 1.32E-04 15587.6 139.312
(6.6E+04)(1.0E+06) (0.046) (9.266) (0.002) (0.003) (4.90E-05) [0.000]

cce 4565 17.551 -11.553 -219.318 0.023 0.973 -1.1E-05 12479 3 15.348
(1.771) (7.874) (0.149) (35.312) (0.001) (0.000) (8.58E-05) [0.002]

See notes in Table 4.a.

Table 4.h. Estimates of the GARCH-MIDAS volatilgpecification with VIX

wy ) m 6 a B H LogLike. L. Ratio

0.140 3.131 -12.190 53.621 0.053 0.918 6.40E-05 16162.4 23.028

AR (0.678) (3.986) (0.186) (8.005) (0.005) (0.009) (5.97E-05) “* 10.000]
AA -0.527 0.228 -11.752 36.056 0.025 0.969 -1.09E-05 16163.9 8.028
(0.601) (1.211) (0.280) (11.891) (0.002) (0.002) (5.88E-05) 9 10.045]

A -1.031 -0.169 -11.850 37.094 0.035 0.952 6.72E-05 16209 7 12.959
(0.832) (1.424) (0.252) (10.843) (0.004) (0.005) (5.86E-05) ' 10.005]

BBB -1.123 -0.174 -11.739 31.200 0.037 0.945 6.60E-05 16260.0 10.329
(1.031) (1.835) (0.197) (8.776) (0.004) (0.005) (5.95E-05) Y 10.016]
BB -35.925 45.053 -12.431 68.832 0.047 0.876 2.82E-05 16037.3 151.507
(L.1E+11)(1L.4E+12) (0.050) (2.258) (0.002) (0.004) (6.86E-05) > [0.000]

B -37.647 -37.302 -12.159 86.562 0.064 0.924 1.28E-04 155586 81.377
(5.5E+03)(5.5E+03) (0.121) (4.566) (0.001) (0.001) (5.44E-05) ‘" [0.000]

cce 5968 89.374 -11.157 88.364 0.010 0.987 -1.7E-04 12520 1 97.088
(2.082) (30.191) (0.062) (2.360) (0.000) (0.000) (1.31E-04) 1 10.000]

See notes in Table 4.a.
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Table 4.i. Estimates of the GARCH-MIDAS volatilispecification with Illiquidity

Wy W m 6 a B K LogLike. L. Ratio

AAA 5.631 2.644 -11.354 98.853 0.048 0.940 6.78E-06 16154.4 7.041
(5.420) (2.393) (0.137) (29.236) (0.004) (0.005) (5.96E-05) [0.071]

AA 3.828 53446 -11.020 26.463 0.028 0.968 5.68E-05 16162.9 6.030
(2.145) (40.642) (0.140) (14.203) (0.003) (0.003) (5.92E-05) [0.110]

A 0.087 0.719 -11.097 29.689 0.036 0.957 3.15E-05 16204 2 1.968
(0.729) (1.767) (0.177) (34.467) (0.003) (0.004) (5.80E-05) [0.579]

BBB -0.618 41.198 -11.026 5.486 0.037 0.952 6.97E-05 16255.7 1.756
(73.949) (2.4E+03) (0.084) (9.336) (0.003) (0.004) (5.88E-05) [0.625]

BB 1.801 1.187 -12.652 426.982 0.064 0.911 4.92E-05 16279.9 636.622
(0.123) (0.071) (0.061) (11.003) (0.002) (0.003) (5.05E-05) [0.000]

B 17.971 12.020 -11.193 250.049 0.197 0.759 -1.2E-04 15656.0 275.998
(1.851) (1.255) (0.072) (5.850) (0.006) (0.006) (3.74E-05) [0.000]

cce 1.425 1.996 -11.141 566.111 0.027 0.969 -8.8E-06 12540 1 136.916
(0.050) (0.060) (0.076) (10.287) (0.001) (0.000) (1.02E-04) [0.000]

See notes in Table 4.a.

Table 4.j. Estimates of the GARCH-MIDAS volatiligpecification with Volatility of

Consumption Growth

Wy W m 6 a B K LogLike. L. Ratio

AAA 103.336 117.734 -11.149 450.535 0.046 0.943 6.44E-05 16155.2 8.684
(53.592) (61.975) (0.111) (148.761) (0.004) (0.005) (5.98E-05) [0.034]

AA 138.644 152.642 -10.996 220.313 0.030 0.966 5.95E-05 16161.8 3.962
(105.746) (118.560) (0.121) (120.811) (0.002) (0.002) (5.86E-05) [0.266]

A 7.027 10.938 -11.290 649.549 0.038 0.953 5.98E-05 16204.6 2.928
(6.511) (10.812) (0.163) (309.401) (0.003) (0.004) (5.82E-05) [0.403]

BBB 381.637 788.044 -11.130 205.150 0.038 0.949 7.54E-05 16262 2 14.778
(0.401) (0.695) (0.071) (37.657) (0.003) (0.004) (5.84E-05) [0.002]

BB 653.936 440.987 -11.252 799.844 0.065 0.907 1.45E-04 16265.0 606.851
(0.170) (0.148) (0.036) (9.050) (0.002) (0.003) (4.88E-05) [0.000]

B 5290 10.127 -11.630 3214.928 0.190 0.767 9.57E-05 15658.5 281.134
(0.266) (0.552) (0.071) (54.792) (0.006) (0.006) (4.30E-05) [0.000]

cce 228.737 167.646 -12.408 738.075 0.029 0.968 8.41E-04 125218 100.449
(29.573) (21.335) (0.147) (46.869) (0.001) (0.000) (7.48E-05) [0.000]

See notes in Table 4.a.
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Table 4.k. Estimates of the GARCH-MIDAS volatiligpecification with Volatility of
Stockholders Consumption Growth

Wy ) m 6 a B H LogLike. L. Ratio

AAA 3.187 38,532 -11.283 30.547 0.050 0.931 6.62E-05 16159 1 16.597
(0.901) (13.578) (0.086) (5.323) (0.005) (0.007) (6.02E-05) [0.001]

AA 6.806 108.735 -11.058 13.104 0.027 0.969 5.77E-05 16166.7 13.709
(3.096) (57.863) (0.130) (4.206) (0.003) (0.003) (5.88E-05) [0.003]

A 15.069 116.531 -11.071 7.618 0.036 0.956 5.67E-05 16206.3 6.242
(17.034) (144.014) (0.112) (3.718) (0.003) (0.004) (5.83E-05) [0.100]

BBB 87.091 5885 -11.079 7.951 0.036 0.955 6.89E-05 16258.7 7.781
(144.414) (9.441) (0.085) (2.937) (0.003) (0.004) (5.86E-05) [0.051]

BB 180.185 365.396 -11.217 33.664 0.055 0.909 1.05E-04 16136.0 348.835
(18.332) (38.813) (0.030) (1.369) (0.002) (0.003) (5.18E-05) [0.000]

B -3.098 -3.315 -10.033 -4.642 0.060 0.935 1.51E-04 15518.9 1.876
(7.622) (7.583) (0.101) (3.289) (0.001) (0.001) (4.59E-05) [0.599]

cce -1.949 -2.256 -12.013 7.518 0.024 0.971 -6.7E-06 124716 0.002
(2.040) (2.006) (0.144) (3.450) (0.001) (0.000) (8.40E-05) [1.000]

See notes in Table 4.a.
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Table 5. The behavior of the difference between NHBAS-GARCH model with a
given state variable indicator and the standard GARnodel for corporate bond return
volatilities during expansions and recessions

AAA CccC
Macroeconomic a £ a B
or Financial (Recession) (Normal vs. (Recession) (Normal vs.
Indicators Recession) Recession)
Default -0.00672 0.00513 0.00097 -0.00011
(< 0.00001) (< 0.00001) (0.65904) (0.96235)
Term -0.00021 0.00022 -0.02321 0.01817
(0.83790) (0.83851) (0.01733) (0.06443)
P 0.00142 0.00811 -0.00526 0.00293
(0.06321) (< 0.00001) (0.01718) (0.23032)
Inflation 0.00151 0.00745 -0.01105 0.00682
(0.08112) (< 0.00001) (< 0.00001) (0.00008)
Consumption 0.00229 0.00745 -0.00139 -0.00364
P (0.00276) (< 0.00001) (0.56044) (0.13688)
Stockholder 0.00161 0.00721 -0.00252 -0.00025
Consumption (0.05681) (< 0.00001) (0.37261) (0.93246)
Emplovment 0.00245 0.00778 -0.00116 -0.00317
ploy (0.00233) (< 0.00001) (0.63025) (0.20950)
VIX -0.00629 0.00431 -0.02064 0.01921
(< 0.00001) (< 0.00001) (< 0.00001) (< 0.00001)
liquidit 0.00038 0.01371 0.11951 -0.09320
quidity (0.75790) (< 0.00001) (< 0.00001) (0.00016)
Consumption 0.00278 0.00748 -0.01062 0.00461
Volatility (0.00126) (< 0.00001) (< 0.00001) (0.00517)
Stock. Con. -0.00062 0.00554 -0.02723 0.02444
Volatility (0.40164) (< 0.00001) (< 0.00001) (0.00013)
OLS regression coefficients with HAC standard esrandp-values in parentheses from the following
regression,
G8M —5EM = o + Bx EXPANSION +uy |
where &tG‘M is the volatility generated by the GARCH-MIDAS rabdwvith the long-run component

changing with the state variable indicated in th&t tolumn, &

s the volatility implied by the model

with constant long-run component, aBKPANSIONis a dummy variable that takes the value of 1
whenever the monthdoes not belong to the NBER official recessioredaand zero otherwise.
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Table 6. Out-of-sample forecasting ability compamidetween the MIDAS-GARCH
model and the model with constant long-run compbrien corporate bond return
volatility

PANEL A: AAA
Default Term IPI Inflation ConsumptioncS tockhold_er
onsumption
F -92.35 53.08 -613.93 -67.27 629.74 -483.67
F (100) -127.36 140.72 -568.02 33.70 493.26 -429.84
F>0 16% 92% 0% 68% 97% 3%
S Consumption Stock. Cons.
Employment VIX Illiquidity Volatility Volatility
F -217.29 566.65 -369.97 -248.18 -490.96
F (100) -8.16 531.21 -345.75 -71.26 -524.83
F>0 49% 94% 0% 31% 0%
PANEL B: CCC
Default Term IPI Inflation Consumption Stockhold_er
Consumption
F 934.29 33.12 779.86 -416.12 234.90 753.66
F (100) 825.03 81.09 544.47 -566.65 85.18 449.79
F>0 100% 89% 99% 0% 76% 93%

Consumption Stock. Cons.

Employment VIX Iliquidity Volatility Volatility
F 829.95 983.91 613.41 829.89 1270.80
F (100) 609.39 832.94 -145.84 718.03 990.17
F>0 100% 100% 48% 100% 100%

The estimation period employs daily informationviee¢n January 1997 and August 2004, and the
forecasting period includes all days between Selp¢en2004 and January 2012. The statistic for the
comparison is:

MSE - MSE

MSE,

whereMSE, andMSE, refer to the mean squared forecasting errorifermiodel with constant long-run
component in volatility, and for the GARCH-MIDAS el with the long-run component determined by
the indicated state variable, respectively. Rowsotkd byF provide the value of the statistic obtained
with one simulated series for the shock. Rows dmhdty F (100) provide the mean value of the 100
statistics from 100 simulated series for the shd€k.0 indicates the number of cases with positive value.

F=(T,-21
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Figure 1. Annualized corporate bond yields by dreating
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Figure 2. Annual consumption, stockholder consuamptand employment growth rates
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Figure 3. Annualized conditional volatilities fapresentative corporate bonds
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Figure 4.a Simple autocorrelation functions of sqdaAAA corporate bond returns
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Figure 4.b Simple autocorrelation functions of 3gdeCCC corporate bond returns
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Figure 5. Dynamic conditional correlations betweairs of corporate bond returns
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Figure 6.a. Slope parameter estimates of the langsomponentfl) with state variable
indicating bad news
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Figure 6.b. Slope parameter estimates of the langzomponentt) with state variable
indicating good news
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Figure 7.a. Differences in volatilities generatgdite GARCH-MIDAS model with
state indicator and the constant long-run compowelatility model. AAA rated bonds.
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Figure 7.b. Differences in volatilities generatgdthe GARCH-MIDAS model with
state indicator and the constant long-run compowelatility model. CCC rated bonds.
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Figure 8.a. Differences in volatilities generatgdite GARCH-MIDAS model with a
financial indicator and the constant long-run comgrt volatility model. AAA rated

bonds.
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Figure 8.b. Differences in volatilities generatgctie GARCH-MIDAS model with a
financial indicator and the constant long-run comgrd volatility model. CCC rated
bonds.
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Figure 9.a. Out-of-sample MSE for the Constant Ldegn Component Volatility and
the GARCH-MIDAS Volatility with Selected Indicatar8AA rated bonds.
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Figure 9.b. Out-of-sample MSE for the Constant Ldegn Component Volatility and
the GARCH-MIDAS Volatility with Selected Indicatar€CC rated bonds.
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